A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kim, S.-H.

Paper Title Page
MO103 SNS Superconducting Linac Operational Experience and Upgrade Path 11
 
  • S.-H. Kim
    ORNL, Oak Ridge, Tennessee
 
 

Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy
The SNS Superconducting Linac (SCL) has been providing the main acceleration in two different accelerating sections with 33 medium beta and 48 high beta superconducting radio-frequency (SRF) 6-cell cavities. The use of superconducting elliptical cavities for particles whose velocity are less than the speed of light, make this accelerator a very important milestone for learning operating conditions of this cavity type. Since the SNS SCL is the first large-scale high energy pulsed-superconducting proton linac that provides high beam power utilizing H- beams, many aspects of its performance were unknown and unpredictable. A large amount of data has been collected on the pulsed behavior of cavities and cryomodules at various repetition rates and at various temperatures. This experience will be of great value in determining future optimizations of SNS as well in guiding in the design and operation of future pulsed superconducting linacs. This paper describes the details of the rf properties, performances, path-forward for the SNS power ramp-up goal, and upgrade path of the SNS superconducting linac.

 

slides icon

Slides

 
THP099 Spallation Neutron Source Superconducting Linac Klystron to Cavity Mismatch Effects and Compensation 1021
 
  • M.P. McCarthy, M.T. Crofford, S.-H. Kim
    ORNL, Oak Ridge, Tennessee
 
 

Funding: Oak Ridge National Laboratory, P.O. Box 2008 Oak Ridge, Tennessee 37831-6285 managed by UT-BATTELLE, LLC for the U.S. Department of Energy Under Contract DE-AC05-00OR22725
Observations of several of the 81 klytron output waveforms into their respective superconducting cavities do not correspond with their rectangular klystron inputs in open loop mode. This can't be completely explained by a drooping high voltage power supply especially when the waveform is parabolic. Some possible causes and effects of these anomalies are presented.

 

slides icon

Slides