A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Jeon, D.

Paper Title Page
MOP075 Benchmarking of Measurement and Simulation of Transverse RMS-Emittance Growth Along an Alvarez DTL 251
 
  • L. Groening, W. Barth, W.B. Bayer, G. Clemente, L.A. Dahl, P. Forck, P. Gerhard, I. Hofmann, G.A. Riehl, S. Yaramyshev
    GSI, Darmstadt
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
  • D. Uriot
    CEA, Gif-sur-Yvette
 
 

Funding: CARE, contract number RII3-CT-2003-506395) European Community INTAS Project Ref. no. 06-1000012-8782
Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriate tools to simulate the beam dynamics are indispensable. This paper is on benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittance growth for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the mean value of final horizontal and vertical rms-emittances can be reproduced well by the codes.

 
MOP091 End-to-End Simulation of the SNS Linac Using TRACK 290
 
  • B. Mustapha, P.N. Ostroumov
    ANL, Argonne
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
 
 

Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357.
In an effort to simulate the SNS linac using the beam dynamics code TRACK and to benchmark the results against the recent commissioning data, we have started updating TRACK to support SNS-type elements such as DTL's and CCL's. After successfully implementing and simulating the DTL section of the SNS linac*, we have implemented the CCL section and the high energy superconducting (SC) section up to 1 GeV. Results from end-to-end simulations of the SNS linac using TRACK will be presented and compared to simulations using other codes and to the recent commissioning data.


*"First TRACK Simulations of the SNS linac", B. Mustapha et al., in Proceedings of Linac-06 Conference, Knoxville, Tennessee, August 21-25, 2006.

 
MOP106 Prediction of 4ν=1 Resonance of a High Intensity Linac 323
 
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
  • G. Franchetti, L. Groening, I. Hofmann
    GSI, Darmstadt
 
 

The 4ν=1 resonance of a linac is found when the depressed tune is around 90 deg. It is observed that this fourth order resonance is dominating over the better known envelope instability and practically replacing it. Simulation study shows a clear emittance growth by this resonance and its stopband. Experimental measurement of the stopband of this resonance is proposed and conducted in early 2008 using the UNILAC at GSI. This study will serve as a excellent benchmarking.

 
MOP107 Transverse Matching of the SNS Linac Based on Profile Measurements 326
 
  • D. Jeon
    ORNL, Oak Ridge, Tennessee
 
 

Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
For a high intensity linac such as the SNS linac, it matters to match adequately to minimize the beam mismatch and potential beam loss. The technique of doing the matching using the wire-scanners in series was employed. It was verified that matching was improved through the matching technique based on the beam profile measurements from wire-scanners in series.

 
MOP108 Phase Law of a High Intensity Superconducting Linac 328
 
  • D. Jeon, J. Galambos
    ORNL, Oak Ridge, Tennessee
 
 

Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
The importance of a proper phase law is recognized to tune the synchronous phase of each superconducting cavities of a high intensity proton linac such as the SNS linac. The factors to be optimized are:

  1. maximizing the longitudinal acceptance
  2. better matching throughout the linac and
  3. achieving maximum beam energy.
The driving force behind this study is how to effectively control the large voltage fluctuation from cavity to cavity, achieving low beam loss and high beam quality.