A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Berkovits, D.

Paper Title Page
MO203 The SARAF CW 40 MeV Proton/Deuteron Accelerator 26
 
  • A. Nagler, D. Berkovits, I. Gertz, I. Mardor, J. Rodnizki, L. Weissman
    Soreq NRC, Yavne
  • K. Dunkel, F. Kremer, M. Pekeler, C. Piel, P. vom Stein
    ACCEL, Bergisch Gladbach
 
 

The Soreq Applied Research Accelerator Facility, SARAF, is currently under construction at Soreq NRC. SARAF is based on a continuous wave (cw), proton/deuteron rf superconducting linear accelerator with variable energy (5-40 MeV) and current (0.04-2 mA). SARAF is designed to enable hands-on maintenance, which implies beam loss below 10-5 for the entire accelerator. Phase I of SARAF consists of an ECR ion source, a LEBT section, a 4-rod RFQ, a MEBT section, a superconducting module housing 6 half-wave resonators and 3 superconducting solenoids, a diagnostic plate and a beam dump. Phase II will include 5 additional superconducting modules. The ECR source has been in routine operation since 2006, the RFQ has been operated with ions and is currently under characterization. The superconducting module rf performance is being characterized off the beam line. Phase I commissioning results, their comparison to beam dynamics simulations and Phase II plans will be presented.

 

slides icon

Slides

 
MOP077 Beam Dynamics Studies on the EURISOL Driver Accelerator 257
 
  • A. Facco, A.I. Balabin, R. Paparella, D. Zenere
    INFN/LNL, Legnaro, Padova
  • D. Berkovits, J. Rodnizki
    Soreq NRC, Yavne
  • J.-L. Biarrotte, S. Bousson, A. Ponton
    IPN, Orsay
  • R.D. Duperrier, D. Uriot
    CEA, Gif-sur-Yvette
  • V. Zvyagintsev
    TRIUMF, Vancouver
 
 

Funding: We acknowledge the financial support of the European Community under the FP6 "Research Infrastructure Action-Structuring the European Research Area" EURISOL DS Project Contract No. 515768 RIDS.
A 1 GeV, 5 mA cw superconducting proton/H- linac, with the capability of supplying cw primary beam to up to four targets simultaneously by means of a new beam splitting scheme, is under study in the framework of the EURISOL DS project which aims to produce an engineering-oriented design of a next generation European Radioactive beam facility. The EURISOL driver accelerator would be able to accelerate also a 100 muA 3He beam up to 2 GeV, and a 5 mA deuteron beam up to 200 MeV. The linac characteristics and the status of the beam dynamics studies will be presented.