A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Belomestnykh, S.A.

Paper Title Page
WE104 First Tests of the Cornell University ERL Injector 699
 
  • B.M. Dunham, I.V. Bazarov, S.A. Belomestnykh, M.G. Billing, E.P. Chojnacki, Z.A. Conway, J. Dobbins, R.D. Ehrlich, M.J. Forster, S.M. Gruner, G.H. Hoffstaetter, V.O. Kostroun, Y. Li, M. Liepe, X. Liu, D.G. Ouzounov, H. Padamsee, D.H. Rice, V.D. Shemelin, C.K. Sinclair, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, V. Veshcherevich, T. Wilksen
    CLASSE, Ithaca, New York
 
 

Funding: Work supported by the National Science Foundation under contract PHY 0131508
Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. The very small electron-beam emittance would produce an X-ray source that is significantly better than any existing storage-ring based light source. One major difference between an ERL and a typical light source is that the final electron beam emittance, and thus the X-ray beam brightness, is determined by the electron injector rather than the storage ring. We are currently constructing and commissioning an injector for an ERL with the goal of demonstrating the low emittances and high beam power required. The injector is designed to accelerate up to 100 mA cw electron bunches of 77 pC/bunch with an energy of 5 MeV (33 mA at 15 MeV) using 1.3 GHz superconducting cavities. A full suite of diagnostics will allow a complete phase space characterization for comparison with simulations and with the requirements. We will describe the current status of the injector along with results, difficulties and challenges to date.

 

slides icon

Slides

 
WE201 RF Systems for CW SRF Linacs 709
 
  • S.A. Belomestnykh
    CLASSE, Ithaca, New York
 
 

The talk will provide an overview of the latest developments in rf systems for cw operated SRF linacs, such as CEBAF (in particular, 12 GeV Upgrade), Cornell ERL injector, ELBE, and ERLP at Daresbury.

 

slides icon

Slides

 
THP034 CW RF Systems of the Cornell ERL Injector 857
 
  • S.A. Belomestnykh, Z.A. Conway, J. Dobbins, R.P.K. Kaplan, M. Liepe, P. Quigley, J.J. Reilly, J.P. Sikora, C.R. Strohman, V. Veshcherevich
    CLASSE, Ithaca, New York
 
 

Funding: Work is supported by the National Science Foundation grant PHY 0131508.
Two high power 1300 MHz rf systems have been developed for the Cornell University ERL Injector. The first system, based on a 16 kWCW IOT transmitter, is to provide rf power to a buncher cavity. The second system employs five 120 kWCW klystrons to feed 2-cell superconducting cavities of the injector cryomodule. The sixth, spare klystron is used to power a deflecting cavity in a pulsed mode for beam diagnostics. A digital LLRF control stem was designed and implemented for precise regulation of the cavities' field amplitudes and phases. All components of these systems have been recently installed and commissioned. The first operational experience with the systems is discussed.

 
THP035 Multipactor in Minimum Electric Field Regions of Transmission Lines and Superconducting RF Cavities 860
 
  • S.A. Belomestnykh, V.D. Shemelin
    CLASSE, Ithaca, New York
 
 

Funding: Work is supported by the National Science Foundation grant PHY 0131508
Multipactor in beam-pipe transitions of superconducting rf cavities can be explained using rf potential well theory*. In this paper we present simulation results supporting this explanation for both rf cavities and transmission lines.


*S. Belomestnykh and V. Shemelin, "Multipacting-free Transitions between Cavities and Beam-pipes," submitted to Nuclear Instruments and Methods in Physics Research A.