A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bandyopadhyay, A.

Paper Title Page
MOP020 Post-Accelerator LINAC Development for the RIB Facility Project at VECC, Kolkata 103
 
  • A. Bandyopadhyay, A. Chakrabarti, T.K. Mandi, M. Mondal, H.K. Pandey
    DAE/VECC, Calcutta
 
 

An ISOL (Isotope Separator On Line) type of RIB (Radioactive Ion Beam) facility* is being developed at our centre. The post-acceleration scheme will consist of a Radio Frequency Quadrupole** (RFQ) followed by a few IH LINAC cavities - further augumentation of energy using SC QWRs will be taken up at a later stage. The first two IH cavities have been designed for 37.6 MHz frequency like the preceding RFQ to keep the rf defocusing smaller. Explosively bonded copper on steel has been used for the fabrication of the IH cavities (1.72 m inner diameter, 0.6 m and 0.87 m lengths) and the inner components have been made out of ETP grade copper. Also, we have adopted an octagonal cavity structure to avoid fabrication complicacies. Thermal analysis of the cavities have been carried out and cooling configurations have been optimized accordingly to control the temperature rise of the LINACs. Detailed mechanical analysis has been carried out to reduce the deflection of the LINAC components under various loads. Design and fabrication aspects of these two cavities and results of the low power tests will be reported in this paper.


* Alok Chakrabarti et. al. ; Proc. Part. Accl. Conf. 2005, pp-395.
** Alok Chakrabarti et. al. ; Nucl. Instr. & Meth., A535 (2004) 599.

 
MOP021 Towards the Development of Rare Isotope Beam Facility at VECC Kolkata 106
 
  • V. Naik, A. Bandyopadhyay, D. Bhowmick, A. Chakrabarti, M. Chakrabarti, S. Dechoudhury, J.S. Kainth, P. Karmakar, T. Kundu Roy, T.K. Mandi, M. Mondal, H.K. Pandey, D. Sanyal
    DAE/VECC, Calcutta
 
 

An ISOL type Rare Isotope Beam (RIB) Facility is being developed at VECC, Kolkata around the existing K=130 room temperature cyclotron. The possibility of using the photo-fission production route using a 50 MeV electron linac is also being explored. The production target and a 6.4 GHz ECR based charge-breeder system will lead to two beam lines. The first one, a low energy beam transport (LEBT) line consisting of a 1.7 m long, 33.7 MHz RFQ, will be dedicated to material science & other ion-beam based experiments. The second, post-acceleration beam line will accelerate the beams to 1.3 MeV/u using a longer, 3.4 m RFQ and a series of IH linear accelerators. In the first stage, the beam energy will be about 400 keV/u using three modules of linacs. Subsequently the energy will be boosted to about 1.3 MeV/u. Some of the systems have already been installed and made operational. The LEBT line has been tested and stable ion beams accelerated to 29 keV/u with high efficiency in the 1.7 m RFQ. The 3.4 m RFQ and the first IH Linac tank are under installation in the post-acceleration beam line. In this contribution an overview of the present status of the facility will be presented.

 
MOP034 Heavy Ion Radio-Frequency Quadrupole LINAC for VEC-RIB Facility 142
 
  • S. Dechoudhury, A. Bandyopadhyay, D. Bhowmick, A. Chakrabarti, T. Kundu Roy, M. Mondal, V. Naik, H.K. Pandey, D. Sanyal
    DAE/VECC, Calcutta
 
 

Radio Frequency Quadrupole (RFQ) would be the first post accelerator for the upcoming Rare Isotope Beam (RIB) facility at Variable Energy Cyclotron Centre (VECC), India. A 33.7 Mhz RFQ capable of accelerating stable as well as RI beams of q/A > 1/16 to about 30 keV/u has already been constructed and operational since September 2005 . This has been installed in a dedicated beam line for doing material science experiments. Another 3.4 m long RFQ resonating at 37.6 Mhz and capable of accelerating heavy ion beams up to 98 keV/u have been fabricated which is to be installed in the beam line for the VEC-RIB facility. The physical parameters,rf test along with the measurements of accelerated beams from RFQ would be presented.