Keyword: klystron
Paper Title Other Keywords Page
MOOCA03 Thyratron Replacement operation, network, linear-collider, electron 45
 
  • I. Roth, M.P.J. Gaudreau, M.K. Kempkes
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  Funding: Work supported by DOE under contract DE-SC0011292
Semiconductor thyristors have long been used as a replacement for thyratrons in low power or long pulse RF systems. To date, however, such thyristor assemblies have not demonstrated the reliability needed for installation in short pulse, high peak power RF stations used with many pulsed electron accelerators. The fast rising current in a thyristor tends to be carried in a small region, rather than across the whole device, and this localized current concentration can cause a short circuit failure. An alternate solid-state device, the insulated-gate bipolar transistor (IGBT), can readily operate at the speed needed for the accelerator, but commercial IGBTs cannot handle the voltage and current required. It is, however, possible to assemble these devices in arrays to reach the required performance levels without sacrificing their inherent speed. Diversified Technologies, Inc. (DTI) has patented and refined the technology required to build these arrays of series-parallel connected switches. DTI is currently developing an affordable, reliable, form-fit-function replacement for the klystron modulator thyratrons at SLAC capable of pulsing at 360 kV, 420 A, 6 μs, and 120 Hz.
 
slides icon Slides MOOCA03 [2.636 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOOCA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMR059 Development of S-band High Power Load vacuum, radio-frequency, radiation, electron 383
 
  • X.C. Meng, H.B. Chen, C. Cheng, Y.-C. Du, Q. Gao, J. Shi, P. Wang, Z.F. Xiong
    TUB, Beijing, People's Republic of China
 
  Several types of S-band high power loads have been designed, manufactured and tested successfully in Tsinghua University. The high power loads, which work at 2856 MHz for 10 MW~100 MW range, are made of all stainless steel. In this paper, we will present the design, fabrication and the high power test results.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMR059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW004 Realization and High Power Tests of Damped C-Band Accelerating Structures for the ELI-NP Linac vacuum, ion, HOM, damping 399
 
  • D. Alesini, M. Bellaveglia, S. Bini, R. Boni, P. Chimenti, F. Cioeta, R.D. Di Raddo, A. Falone, A. Gallo, V.L. Lollo, L. Palumbo, S. Pioli, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • F. Cardelli, M. Magi, A. Mostacci, L. Palumbo, L. Piersanti
    University of Rome La Sapienza, Rome, Italy
  • F. Cardelli, L. Piersanti
    INFN-Roma1, Rome, Italy
  • P. Favaron, F. Poletto
    INFN/LNL, Legnaro (PD), Italy
  • L. Ficcadenti, F. Pellegrino, V. Pettinacci
    INFN-Roma, Roma, Italy
 
  The ELI-NP C-Band structures are 1.8 m long travelling wave accelerating structures, quasi-constant gradient, with a field phase advance per cell of 2pi/3. They operate at a repetition rate of 100 Hz and, because of the multi-bunch operation, they have been designed with a dipole HOM damping system to avoid beam break-up (BBU). The structures have symmetric input and output couplers and integrate, in each cell, a waveguide HOM damping systems with silicon carbide RF absorbers. An optimization of the electromagnetic and mechanical design has been done to simplify the fabrication and to reduce their cost. After the first full scale prototype successfully tested at the nominal gradient of 33 MV/m, the production of the twelve structures started. In the paper we illustrate the main design criteria, the realization process and the high power test results.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW006 The RF System of the ELI-NP Gamma Beam Source LLRF, linac, electron, network 407
 
  • L. Piersanti, F. Cardelli, L. Palumbo
    INFN-Roma1, Rome, Italy
  • D. Alesini, M. Bellaveglia, R. Boni, A. Gallo, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • F. Cardelli, L. Palumbo, L. Piersanti
    University of Rome La Sapienza, Rome, Italy
  • G. D'Auria
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  ELI-NP is a linac based gamma-source under construction in Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy (from 0.2 to 19.5 MeV) and with unprecedented intensity and brilliance will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV), and a 515 nm intense laser pulse. In order to increase the gamma photon flux, the accelerator will operate in multi-bunch at 100 Hz repetition rate, with 32 bunches separated by 16 ns. Three S-band (2856 MHz) RF power plants will feed two room temperature Travelling Wave (TW) structures, a 1.6 cell Standing Wave (SW) S-band gun (which has been manufactured by means of a new technique based on clamped gaskets without brazing) and two SW RF deflectors for longitudinal beam diagnostics. Ten C-band (5712 MHz) RF power plants will feed 12 TW high-order-modes (HOM) damped structures. In this paper, we review the whole ELI-NP RF architecture including the Low Level RF (LLRF) system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW009 RF System of the SPring-8 Upgrade Project storage-ring, LLRF, linac, synchrotron 414
 
  • H. Ego, T. Fujita, N. Hosoda, K. Kobayashi, T. Masuda, S. Matsubara, T. Sugimoto
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Asaka, T. Fukui, T. Inagaki, C. Kondo, H. Maesaka, T. Ohshima, T. Sakurai
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  The RF system of the SPring-8 storage ring has stably generated an accelerating voltage of 16 MV at a frequency of 508.58 MHz since 1997. In the upgrade of the SPring-8, a beam energy is lowered from 8 to 6 GeV and a needed voltage is 7 MV. The upgrade employs multi-bending optics, and shortens the straight sections available for RF accelerating cavities by 30%. On account of the space, the RF system is to be so rearranged that the number of cavities can be reduced to half. The analog low-level RF (LLRF) system in use controls the voltage with sufficiently small deviations of less than 0.1 % in amplitude and less than 0.1 degree in phase, but becomes out-of-dates and hard to be maintained. We plan to replace them with a compact digital LLRF system in the MTCA.4 standard and based on under-sampling scheme. The SACLA linac is used for injecting a low-emittance beam to the ring. Because we have to balance the FEL operation and the beam injection on demand, pulse-by-pulse control of beam parameters is going to be implemented to the SACLA LLRF modules. Furthermore, we build a timing system for injection to a target bucket-position in the ring within a time deviation of 3 ps.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW042 Multi-Dimensional RF Sources Design electron, cavity, space-charge, gun 501
 
  • M. Dal Forno, A. Jensen, R.D. Ruth, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the US DOE under contract DE-AC02-76SF00515.
Vacuum electronic devices, such as rf sources for accelerator applications, must provide high rf power with high efficiency. To achieve these requirements, multi-beam klystron and sheet-beam klystron devices have been developed. Multi-beam klystrons, at high frequency employ separate output cavities; hence they have the disadvantage that combining all the rf pulses, generated by all the beams, is challenging. Sheet-beam klystrons have problems with instabilities and with space charge forces that makes the beam not naturally confined. We are proposing an alternative approach that reduces space charge problems, by adopting geometries in which the space charge forces are naturally balanced. An example is when the electron beam is generated by a central source (well) and the electron motion corresponds to the natural expansion of the electron cloud (three-dimensional device). In this paper we will present the design and challenges of a bi-dimensional rf source, a cylindrical klystron, composed by concentric pancake resonant cavities. In this case, space charge forces are naturally balanced in the azimuthal direction.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMW043 Overview of High Power Vacuum Dry RF Load Designs vacuum, linac, accelerating-gradient, interface 504
 
  • A.K. Krasnykh, A. Brachmann, F.-J. Decker, T.J. Maxwell, J. Sheppard
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by US Department of Energy under contract DE-AC02-76SF00515
A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on 'vacuum dry' or 'all-metal' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY003 Transient Beam Loading Effects in RF Systems in JLEIC electron, cavity, feedback, controls 518
 
  • H. Wang, J. Guo, R.A. Rimmer, S. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, exceed the energy acceptance of CEBAF's recirculating arc. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analyzed the beam stability criteria in steady state and estimate the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY013 Design Study of Collector for CEPC 650 MHz Klystron gun, simulation, operation, interface 540
 
  • S.C. Wang, D.D. Dong, S. Fukuda, G. Pei, O. Xiao, .. Zaib-un-Nisa, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
  • S. Fukuda
    KEK, Ibaraki, Japan
 
  This paper presents the design and simulation of collector for CEPC 650 MHz high-power CW klystron. Power dissipation in collector is optimised by universal beam spread curve using EGUN code, and beam trajectory in collector is verified by Magic code. The thermal analysis is done by ANSYS-CFX, and groove number and water flow rate are optimized by fluid-solid coupled heat transfer simulation.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY014 Design Study of RF Section and Cavities for Cepc 650 MHz Klystron cavity, simulation, electron, bunching 543
 
  • O. Xiao
    Institute of High Energy Physics (IHEP), People's Republic of China
  • D.D. Dong, S. Fukuda, Z.J. Lu, G. Pei, S.C. Wang, .. Zaib-un-Nisa, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
  • S. Fukuda
    KEK, Ibaraki, Japan
 
  An 800 kW CW klystron operating at 650 MHz is de-veloped for CEPC at Institute of High Energy Physics in China. The conceptual design has been finished and the main parameters are presented in this paper. A 1D large signal disk model code, AJDISK, has been used to design and optimize klystron RF section parameters. In addition, the RF cavities have been designed using SUPERFISH, HFSS and CST.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY015 Design Study of Electron Gun for CEPC 650 MHz Klystron gun, cathode, electron, simulation 546
 
  • .. Zaib-un-Nisa, D.D. Dong, Z.J. Lu, G. Pei, S.C. Wang, O. Xiao, Z.S. Zhou
    IHEP, People's Republic of China
  • S. Fukuda
    KEK, Ibaraki, Japan
 
  This paper presents the design and simulation of an electron gun for 800 kW CW klystron of which frequency is 650 MHz for CEPC project. An electron gun with a modulating anode is designed using DGUN software. The uniform beam trajectories, with a beam perveance of 0.64μA/V 3/2 are simulated. We employed a Ba-dispenser cathode of radius 35 mm with Φ10 hole at the center and obtained a current density on cathode less than 0.45 A/cm2. The beam trajectories were also simulated over whole tube length with a magnetic field of 207 Gauss. Expecting functions using the modulating anode gun are also described. Proposed beam tester and whole CEPC klystron layout are also shown in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY026 Development of an X-Band Linearizer System for PAL-XFEL LLRF, electron, acceleration, wakefield 554
 
  • H. Heo, J. Hu, H.-S. Kang, K.H. Kim, S.H. Kim, H.-S. Lee, B.G. Oh, S.S. Park, Y.J. Park, Y.J. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  We developed an X-band RF system for the linear bunch compression in the PAL-XFEL. We installed a SLAC X-band accelerating structure on a precise mover stage and applied RF power by using a SLAC XL-4 11.424 GHz klystron driven by an inverter charging type modulator. We are developing a solid state amplifier controlled by an X-band LLRF system instead of using a TWTA as a driving RF source for the klystron. We present and discuss the recent test results of the system.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY027 Preliminary Design of High-efficiency Klystron for Pohang Accelerator Laboratory (PAL) cavity, beam-losses, simulation, operation 557
 
  • S.J. Park, J.Y. Choi, Y.D. Joo, K.R. Kim, W. Namkung, C.D. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  • M.-H. Cho, J.H. Hwang, T. Seong
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Supported by the Ministry of Science, ICT and Future Planning of Korea.
Klystrons for particle accelerators are typically designed to have narrow bandwidths with center frequencies ranging from several hundreds (e.g., 350) MHz to X-band (11.424 GHz). Output powers are from several tens of kW to ~1 MW for CW klystrons and ~100 MW for pulsed ones. The narrow-bandwidth requirement has enabled them to provide high gain (typically 40 - 50 dB) which greatly simplifies the RF drive system. Recently, especially for large-scale accelerator facilities, the klystron efficiency has become one of the most demanding issues. This is because electricity cost occupies a great portion of their operating budgets and the klystron efficiency is one of the important factors determining the electricity consumption of the whole accelerator system. In this regard, we have designed a high-efficiency klystron for use in the PLS-II and PAL XFEL at PAL. The basic scheme is to re-design the cavity system to include multi-cell output cavity. In this article, we report on our preliminary design work to determine major cavity parameters including cell frequencies, inter-cell distances, and coupling to external circuits (coupling beta).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMY037 GaN Class-F Power Amplifier for Klystron Replacement vacuum, electron, operation, controls 583
 
  • A.V. Smirnov
    RadiaBeam Systems, Santa Monica, California, USA
  • R.B. Agustsson, S. Boucher, D.I. Gavryushkin, J.J. Hartzell, K.J. Hoyt, A.Y. Murokh, T.J. Villabona
    RadiaBeam, Santa Monica, California, USA
 
  Funding: This work was supported by the U.S. Department of Energy (award No. DE-SC0013136)
The vacuum-tube-based RF amplifiers are relatively inefficient and becoming obsolete as the RF world has been progressively converting to solid state technology. Currently, the JLAB upgrade program requires 340 amplifiers capable of 8 kW CW at 1497 MHz while operating at more than 55-60% efficiency to replace their klystrons. Here we explore the possibility of a klystron replacement employing high electron mobility packaged GaN transistors applied in an array of Class-F amplifiers. The inputs and outputs of the many modules needed to make a complete amplifier are connected via precise, in-phase, low-loss, broadband, combiners-dividers. We describe early prototypes of the amplifiers as well as the combiners-dividers and discuss the design features and challenges of such a scheme. This approach can be applied to other national facilities and also for replacement of the klystrons in Middle Energy Electron-Ion Collider which requires about 1.8 MW CW power in total to be produced at 952.6 MHz frequency including 2x12.5 kW power for "crabbing" and 0.53 MW for electron cooling.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMY037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW003 RF Phase Jitter Consideration in Bunch Compression simulation, electron, linac, FEL 704
 
  • T.K. Charles, D.M. Paganin
    Monash University, Faculty of Science, Clayton, Victoria, Australia
  • M.J. Boland, R.T. Dowd
    SLSA, Clayton, Australia
 
  Error propagation of RF phase jitter is analysed for various linac layout configurations and the sensitivity of the compression ratio due to RF phase jitter is analysed. Multiple sources of jitter have the opportunity to destructively interfere, and (perhaps counter intuitively) found to not add in quadrature. Results are compared to Elegant simulations.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMB016 Continuous-Wave Electron Linear Accelerators for Industrial Applications linac, electron, resonance, accelerating-gradient 1142
 
  • D.S. Yurov, A.S. Alimov, B.S. Ishkanov, V.I. Shvedunov
    MSU, Moscow, Russia
 
  Based on SINP MSU experience in developing continuous wave (CW) normal conducting (NC) electron linacs, we propose an optimal design for such accelerators with beam energy of up to 10 MeV and average beam power of up to several hundred kW. As an example of such design, we discuss the 1 MeV industrial CW linac with maximum beam power of 25 kW, which was recently commissioned at SINP MSU.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMB016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW021 Beam Dynamics Optimization and Future Plans for LUE-200 Linac Upgrade simulation, beam-loading, bunching, linac 1788
 
  • S.M. Polozov, T.V. Bondarenko
    MEPhI, Moscow, Russia
  • A.V. Butenko, V. Kobets, A.P. Sumbaev
    JINR, Dubna, Moscow Region, Russia
 
  The IREN facility (Intense Resonance Neutron Source) is now been tested and upgraded in JINR. The linear electron accelerator LUE-200 is used to generate intense fluxes of resonant photo-neutrons. Linac should deliver up to 200 MeV electron beam with 1 A or more current in 100 - 200 ns pulses. It consists of electron source, LEBT including buncher and two main accelerating sections (only one is installed up to now). Test operations shows that beam loading sufficiently influences the output beam parameters and beam energy after first section decreases from planned 55-60 MeV to 35 MeV. The buncher doesn't provide an efficient beam bunching also and beam recapturing by main section due to this is very low. Dynamics of the electron beam for traveling wave S-band linac LUE-200 was studied by numerical simulations. In report results of beam dynamics simulation and optimization taking into account beam loading discuss, parameters for new more effective buncher presents and first results of such buncher development shows.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY007 Development of a Compact X-Band Electron Linac for Production of Mo-99/Tc-99m linac, electron, beam-loading, simulation 1917
 
  • J. Jang
    The University of Tokyo, Tokyo, Japan
  • M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • M. Yamamoto
    Accuthera Inc., Kawasaki, Kanagawa, Japan
 
  In response to the need of alternatives to the exhausted research reactors supplying Mo-99/Tc-99m, we are developing a compact X-band electron linear accelerator (linac). As an initial step, beam dynamics simulations were performed and electron beams of 35 MeV and 9.1 kW were obtained. We expect that sixteen linacs having these beam parameters can cover the demand of Tc-99m radiopharmaceuticals in Japan. On the other hand, we found that the combination of X-band RF and high beam power can give rise to instability of beam loading. We will therefore adjust and optimize the beam power while keeping Mo-99 production efficiency as high as possible.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOY044 Energy Efficiency of High Power Accelerators for ADS Applications neutron, linac, proton, cyclotron 2001
 
  • M. Haj Tahar, F. Méot, S. Peggs
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
One important issue identified by the 2014 comprehensive nuclear fuel cycle Evaluation & Screening report* that was chartered by the US Department of Energy was the impact of the electricity required to operate the accelerator on the overall efficiency of an Accelerator Driven System (ADS).The objective of this paper is to contribute some understanding regarding that issue. Then, by looking at several options of existing and projected accelerator technologies for ADS, we evaluate the impact of the technology choice on the efficiency of a conventional ADS facility, in view of investigating the limitations and where there is room for improvement.
* R. Wigeland et al, Nuclear fuel cycle evaluation and screening'final report: Appendix B, Comprehensive set of fuel cycle options. Idaho National Laboratory Technical Report INL/EXT-14-31465 (2014).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOY044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR030 Pulsed Field Limits in SRF Cavities cavity, SRF, niobium, factory 2341
 
  • J.T. Maniscalco, D. Gonnella, D.L. Hall, P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  High-power pulsed (HPP) measurements of SRF cavities offer several different avenues of experimentation from standard continuous wave (CW) measurements by probing higher fields and reducing thermal effects. In this paper we report upon recent measurements of N-doped Nb and Nb3Sn cavities, investigating the limitations of the superheating field, flux entry field, and other maximum fields. We also investigate the potential of these materials for operation in a pulsed accelerator, which would partially or fully mitigate the effects of defects (i.e. thermal quenches).  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR052 Development of EPICS Control System for ODA Magnet Power Supplies and GigE CCD Camera controls, linac, electron, EPICS 2392
 
  • S.S. Cha, J.H. Ha, J.H. Kim, Y. Kim
    KAERI, Jeongeup-si, Republic of Korea
  • P. Buaphad
    RTX, Daejeon, Republic of Korea
  • S.D. Yang
    Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup-si, Jeollabuk-do, Republic of Korea
 
  The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been op-erating a 10 MeV RF electron linear accelerator, which is used for electron beam irradiation. The beam power and energy of the RF electron linear accelerator are 10 kW and 10 MeV. The accelerator is composed of an electron gun, an S-band (= 2856 MHz) accelerating structure, a klystron, electromagnetic solenoids, a scanning electromagnet, an RF driver, a modulator, and a chiller. The linac components have deteriorated due to a long operation time of 9 years. In this paper, we described Experimental Physics and Industrial Control System (EPICS) to control ODA magnet power sup-plies for solenoids and steering magnets of the 10 MeV electron beam irradiation accelerator.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR007 Recent Improvements in Drive Beam Stability in CTF3 feedback, operation, gun, linac 2677
 
  • L. Malina, R. Corsini, D. Gamba, T. Persson, P.K. Skowroński
    CERN, Geneva, Switzerland
 
  The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam producing the RF power to accelerate the low intensity main beam with 100 MeV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. Finding and understanding the sources of jitter plays a key role in their mitigation. In this paper, we report on the recent studies in the CLIC Test Facility (CTF3). New jitter and drift sources were identified and adequate beam-based feed-backs were implemented and commissioned. Finally, we present the resulting improvement of drive beam stability.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR040 LLRF Development for PAL-XFEL LLRF, operation, electron, feedback 2761
 
  • J. Hu, W.H. Hwang, H.-S. Kang, H.-S. Lee, C.-K. Min, G. Mun
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J.H. Chang, J.S. Han, Y.S. Kim
    RFPT, Gyeonggi-do, Republic of Korea
  • O.J. Kim, H.S. Lee
    Mobiis Co., Ltd., Seoul, Republic of Korea
 
  PAL-XFEL construction is completed. Now, beam commissioning is ongoing after RF conditioning. The LLRF and SSA systems installed and in normal operation are presented. Those structures, features, characteristics, and performances are described.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW012 Hardware Upgrades Improve the Reliability at BESSY II storage-ring, operation, cavity, HOM 2844
 
  • A. Schälicke, W. Anders, J. Borninkhof, V. Dürr, P. Goslawski, A. Hellwig, A. Heugel, H.-G. Hoberg, H. Hoffmann, A. Jankowiak, J. Kolbe, P. Kuske, G. Mielczarek, R. Müller, D. Pflückhahn, M. Ries, S. Rotterdam, M. Ruprecht, B. Schriefer, D. Simmering, H. Stein
    HZB, Berlin, Germany
 
  The synchrotron light source BESSY II is now in its second decade of operation. Already in 2013 both top-up and fast orbit feedback have been introduced into user operation. Currently, the facility is undergoing significant hardware upgrades in order to fulfill the increasing demands of its user community in terms of reliability, stability and flexibility. These include replacement of the DORIS cavities with EU HOM damped cavities, the upgrade of the RF transmitters to solid state amplifiers, implementation of the shifted waist optics for the new in-vacuum undulator, and refurbishment of the superconducting multi-pole wiggler. In this contribution status of BESSY II operation and the upgrade projects is reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOW033 Commissioning of the Alba Injector With 67 Mev Single Klystron Linac linac, quadrupole, booster, dipole 2905
 
  • G. Benedetti, U. Iriso, J. Marcos, Z. Martí, V. Massana, R. Muñoz Horta, F. Pérez, M. Pont
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The 3 GeV ALBA booster normally accelerates an injected beam of 110 MeV, delivered by the linac operating with two independent klystrons. On 2014, the linac waveguide system was upgraded and commissioned to allow operating with either klystron and providing a reduced beam energy of 67 MeV. The commissioning of the booster to capture the beam at a reduced energy and ramp it up to 3 GeV has required a long set-up process of the magnets at 67 MeV beam energy. Due to the dominant effect of the remnant magnetic field in the low energy regime, the scaling of the magnet settings at the beginning of the ramp did not allow to capture the beam, and more precise calibrations were measured on spare quadrupoles to ease its fine tuning. The effect of higher eddy currents induced when the dipoles start ramping, combined with the lower beam rigidity, has been also an issue to tune the dipole waveforms for the 67 MeV - 3 GeV cycle. The encountered problems and their solutions to commission the ALBA injector in this new mode of operation are here presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOW033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAB02 Concept of RF Linac for Intra-pulse Multi-energy Scan linac, electron, experiment, gun 3180
 
  • A.K. Krasnykh, J. Neilson, A.D. Yeremian
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported in part by US Department of Energy under contract DE-AC02-76SF00515
A material discrimination based on X-Ray systems is typically achieved by alternating photon pulses of two different energies. A new approach relies on the ability to generate X-ray pulses with an end-point energy that varies in a controlled fashion during the duration of the pulse. An intra-pulse multi-energy X-ray beam device will greatly enhance current cargo screening capabilities. This method originally was described in the AS&E patents*. This paper addresses a linac concept for the proposed scan and describes some proof of concept experiments carried out at SLAC.
* A. Arodzero et al., 'System and methods for intra-pulse multi-energy and adaptive multi-energy X-ray cargo inspection', US Patent 8,457, 274, 2013
 
slides icon Slides THOAB02 [1.776 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOAB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBB01 PAL-XFEL Linac RF System linac, network, vacuum, radiation 3192
 
  • H.-S. Lee, H. Heo, J. Hu, H.-S. Kang, K.W. Kim, K.H. Kim, S.H. Kim, I.S. Ko, S.S. Park, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  • H. Matsumoto
    KEK, Tokai, Ibaraki, Japan
 
  The PAL-XFEL hard X-ray linac has a 716 m long gallery and tunnel for 10 GeV. Forty nine modulators are necessary in the hard X-ray gallery for an X-band linearizer, an S-band RF gun, two S-band deflectors and 45 S-band klystrons for accelerating structures. They have been installed completely from March 15, 2015 to December 30, 2015 after completing the building construction. There are 51 modulators, 178 accelerators structures, 42 SLEDs in the hard X-ray linac and the soft X-ray linac. The RF conditioning of the klystrons, SLEDs and accelerating structures were stated from November 24, 2015. We describe the PAL-XFEL system and the current status of the linac RF system.  
slides icon Slides THOBB01 [22.023 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOBB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW022 The RF Design of a Compact, High Power Pulse Compressor with a Flat Output Pulse cavity, FEL, flattop, linac 3591
 
  • P. Wang, H.B. Chen, J. Shi
    TUB, Beijing, People's Republic of China
  • I. Syratchev, W. Wuensch, H. Zha
    CERN, Geneva, Switzerland
 
  An X-band, high-power pulse compressor, which can produce a flat pulse and a power gain of 4.3, has been designed. The device is compact, with the dimensions of within 1m, and is designed for CLIC first energy stage based on klystrons. We also discuss about a two stage pulse compressor with power gain of 9.18, which may be a candidate of the X-FEL using CLIC X-band linacs and klystrons with low peak power.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW024 Phase Tuning Results of the Waveguide Network System at Pal network, resonance, target, linac 3597
 
  • K.H. Kim, S.H. Kim, H.-S. Lee, S.S. Park, Y.J. Park
    PAL, Pohang, Republic of Korea
 
  We report the results of the phase tuning of the waveguide network system with the C-clamp tool and the resonance frequency tuning for the SLAC energy doubler. The high power waveguide network which dividing and feeding the power to the four accelerating structures. The phase length is adjusted within ± 0.25 degrees with a transmission phase measuring method. The resonant frequency range for the SLAC energy doubler is 2856 MHz ± 5 kHz, but a target range is 2856 MHz ± 1 kHz. We measured the phase length and an amplitude with a vector network analyser. The test setup consists of a SLED, a waveguide network, directional couplers, phase stable cables. All components of the waveguide networks were manufactured at VITZRO TECH and tested at the accelerator tunnel in the Pohang Accelerator Laboratory (PAL).  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW027 Development of a Long Pulse High Power Klystron Modulator for the ESS Linac based on the Stacked Multi-level Topology high-voltage, linac, DTL, operation 3600
 
  • C.A. Martins
    ESS, Lund, Sweden
  • M. Collins, A. Reinap
    Lund Technical University, Lund, Sweden
 
  A novel Stacked Multi-Level modulator topology optimized for long pulse and high average power applications has been developed at ESS. It utilizes six identical modules connected in series at the HV output side and fed in parallel from the low voltage side. Each one is formed by one HF inverter, one step-up transformer, one HV rectifier bridge and one HV passive filter. They are supplied in groups of two from three capacitor banks which in turn will be charged from the low voltage electrical grid by using three groups of active AC/DC and DC/DC converters. Industrial standard power electronic components are used at the primary stage, which are placed in conventional electrical cabinets. Only few special components (transformers, rectifiers, filters) are required to be placed in an oil tank. A technology demonstrator rated for 115kV/20A and 3.5ms/14Hz is at the final phase of construction. The main power conversion circuit and regulation principles will be described and details on the design and construction of the main sub-systems will be given. Simulation and experimental results will be given showing the achieved performance in terms of HV pulse quality and AC grid power quality  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW037 Pulsed Power Systems for ESS Klystrons operation, electronics, cathode, high-voltage 3634
 
  • I. Roth, M.P.J. Gaudreau, M.K. Kempkes
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
  • J. Domenge
    Sigma Phi Electronics, Wissembourg, France
  • J.L. Lancelot
    Sigmaphi, Vannes, France
 
  Diversified Technologies, Inc. (DTI) is building three long pulse solid-state klystron transmitters to meet spallation source requirements. Two of the three will be installed at CEA Saclay and the National Institute of Nuclear and Particle Physics (IN2P3) in 2015, to be used as test stands for the European Spallation Source (ESS), The third system will be installed at Oak Ridge National Laboratory (ORNL) for the Spallation Neutron Source (SNS).  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW040 Multipactor Discharge in a Resonator as an Active Switch for RF Pulse Compression multipactoring, cavity, plasma, electron 3640
 
  • J.Q. Qiu, S.P. Antipov, C.-J. Jing, A. Kanareykin
    Euclid Beamlabs LLC, Bolingbrook, USA
  • E.V. Ilyakov, I.S. Kulagin, S.V. Kuzikov, A.A. Vikharev
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: Phase I DOE SBIR
Pulse compression is a method of increasing the peak power of the microwave pulse at the expense of its length. Over the years a number of pulse compressors had been demonstrated with some being bulky but efficient, like the binary pulse compressor and other being compact but less efficient, like SLED-II. An active pulse compressor had been proposed to increase the efficiency and compression ratio which relies on a high power active switch. Currently there are no practical switches that can work reliably with 100 s of megawatts of power. Most of the switches (ferroelectric, plasma-based, semiconductor) are limited by the breakdown strength of various dielectric inserts. In this paper we report on an active switch development which is based on a pure copper resonator and controlled by a single-side multipactor discharge at a metallic wall in the presence of a resonant DC magnetic field and a normal to metal rf field. The discharge is ignited by external rf power produced by inexpensive 2.45 GHz, 1-5 kW magnetrons.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR024 Electrical Power Budget for FCC-ee collider, cavity, operation, cryogenics 3828
 
  • F. Zimmermann, S. Aull, M. Benedikt, D. Bozzini, O. Brunner, J.-P. Burnet, A.C. Butterworth, R. Calaga, E. Jensen, V. Mertens, A. Milanese, M. Nonis, N. Schwerg, L.J. Tavian, J. Wenninger
    CERN, Geneva, Switzerland
  • A.P. Blondel, M. Koratzinos
    DPNC, Genève, Switzerland
  • Sh. Gorgi Zadeh
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • K. Oide
    KEK, Ibaraki, Japan
  • L. Rinolfi
    JUAS, Archamps, France
 
  Funding: Supported by the European Commission under the Capacities 7th Framework Programme project EuCARD-2, grant agreement 312453.
We present a first rough estimate for the electrical power consumption of the FCC-ee lepton collider. This electrical power is dominated by the RF system, which provides the motivation for the ongoing R&D on highly efficient RF power sources. Other contributions come from the warm arc magnets, the cryogenics systems, cooling, ventilation, general services, the particle-physics detectors, and the injector complex.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR031 Beam-Loading Effect on Breakdown Rate in High-Gradient Accelerating Structures beam-loading, linac, experiment, controls 3848
 
  • F. Tecker, T. Argyropoulos, N. Catalán Lasheras, R. Corsini, A. Degiovanni, D. Gamba, J. Giner Navarro, A. Grudiev, G. McMonagle, J.L. Navarro Quirante, R. Rajamaki, E. Senes, I. Syratchev, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • T. Argyropoulos, J. Giner Navarro
    IFIC, Valencia, Spain
  • A. Degiovanni, J.L. Navarro Quirante
    ADAM, Geneva, Switzerland
  • D. Gamba
    JAI, Oxford, United Kingdom
  • R. Rajamaki
    Aalto University, School of Science and Technology, Aalto, Finland
  • E. Senes
    Torino University, Torino, Italy
  • J. Tagg
    National Instruments Switzerland, Ennetbaden, Switzerland
 
  The Compact Linear Collider (CLIC) study for a future electron-positron collider with a center-of-mass energy up to 3 TeV aims for an accelerating gradient of 100 MV/m. The gradient is limited by RF breakdowns, and the luminosity requirements impose a limit on the admissible RF breakdown rate. RF testing of 12 GHz structure prototypes has shown that gradients in excess of 100 MV/m can be reached with the required breakdown rate. However at CLIC, the structures will be operated with significant beam-loading, modifying the field distribution inside. The effect of the beam-loading must be well understood but has not been previously measured. The commissioning and operation of an experiment to measure the effect of beam-loading on breakdown rate and the measurement results are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR046 CEPC 650 MHz Klystron Development gun, simulation, electron, operation 3891
 
  • Z.S. Zhou, D. Dong, S. Fukuda, Z.J. Lu, G. Pei, S.C. Wang, O. Xiao, .. Zaib-un-Nisa
    IHEP, Beijing, People's Republic of China
  • S. Fukuda
    KEK, Ibaraki, Japan
 
  The CEPC collider beam power is about 100 MW, so the efficiency of amplifier is very important for cost of project implementation. The high power klystron is the more attractive because of its potential for higher efficiency than solid state amplifier. For CEPC klystron output power is not so high, the operation voltage can be a safe value. Advantage for single beam: reliable, low phase noise, some perspective technology can be used to improve efficiency. The accelerating frequency is 650 MHz, output power is a maximum power of 800kW, and efficiency is about 70%. In this paper, the specifications and developments of 650 MHz CW klystron, including the klystron gun prototype and future high efficiency consideration are summarized.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW013 ARM-Based Controller of Power Supply for Focus Solenoid of Klystron power-supply, controls, solenoid, linac 3957
 
  • Z.R. Zhou, F.L. Shang, L. Shang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China 11175181 By the Fundamental Research Funds for the Central Universities WK2310000056
Klystrons are widely used in accelerators to provide powerful microwave power to the accelerating structure of linac to accelerate particles. The stability of a klystron is affected by the beam quality of high voltage gun of the klystron. The focus solenoid is needed to provide focus magnetic field around the klystron. ARM-based high performance of current stability power supply is designed to improve the quality of focus magnetic field of klystron, with a two-loop-hybrid design, which could achieve fast dynamic response and high static stability performance, instead of analogue power supply design. The bench test of the ARM-based controlled is done and the commissioning of the controller needs be done in future study.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY036 A New Fast RF Trip Diagnostic System in SSRF diagnostics, vacuum, cavity, pick-up 4182
 
  • S.J. Zhao, Q. Chang, H.T. Hou, Z. Li, K. Xu, W.Z. Zhang, Zh.G. Zhang, Y.B. Zhao, X. Zheng
    SINAP, Shanghai, People's Republic of China
 
  A RF trip diagnostic system is essential to find out the trip source when a trip happened. In this paper, a fast RF trip diagnostic system, in storage ring RF system of SSRF, is reported. This system includes a synchronous acquisition recorder to sampling the trip data and a trip server to analysis the data. The recorder has more than 100 channels and maximum sampling rate of each channel is up to 60 MSPS. High precision I/Q cards are designed to detect RF signals. Trip server has been developed to process the trip data.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)