Paper | Title | Page |
---|---|---|
MOBD2 | Design and Prototyping of HL-LHC Double Quarter Wave Crab Cavities for SPS Test | 64 |
|
||
Funding: Work supported by US DOE via US LARP program, through BSA LLC contract No.DE-AC02-98CH10886 and by EU FP7 HiLumi LHC grant No.284404. Used NERSC resources by US DOE contract No.DE-AC02-05CH11231. The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double-Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. A couple of DQW crab cavities are under preparation and will be tested with beam in the Super Proton Synchrotron (SPS) of CERN by 2017. This paper describes the design and prototyping of DQW crab cavities for the SPS test. |
||
![]() |
Slides MOBD2 [6.909 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOBD2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMA048 | Experimental and Simulational Result of Multipactors in 112 MHz QWR Injector | 1938 |
|
||
Funding: This work was carried out at Brookhaven Science Associates, LLC under Contracts No. DE-AC02-98CH10886 and at Stony Brook University under grant DE-SC0005713 with the U.S. DOE. The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were install and tested for the first time. During this experiment, we observed several multipacting barriers at varied gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.7 MV gun voltage under pulsed mode after several round of conditioning processes. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA048 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI015 | BNL 56 MHz HOM Damper Prototype Fabrication at JLab | 3521 |
|
||
A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI049 | Commissioning of the 112 MHz SRF Gun and 500 MHz Bunching Cavities for the CeC PoP Linac | 3597 |
|
||
Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase I a 112 MHz superconducting RF photoemission gun and two 500 MHz normal conducting bunching cavities were installed and commissioned. The paper describes the Phase I linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI049 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI050 | SRF and RF Systems for LEReC Linac | 3600 |
|
||
Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow beams. For the first stage of the project, LEReC-1, we will to install a 704 MHz superconducting RF cavity and two normal conducting cavities operating at 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI050 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI059 | Higher Order Mode Filter Design for Double Quarter Wave Crab Cavity for the LHC High Luminosity Upgrade | 3627 |
|
||
Funding: Work partly supported by US LARP, by US DOE under contract No. DE-AC02-05CH11231 and through BSA under contract No. DE-AC02-98CH10886. Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404. A double quarter wave crab cavity (DQWCC) was designed for the Large Hadron Collider (LHC) luminosity upgrade. A compact Higher Order Mode (HOM) filter with wide stop band at the deflecting mode is developed for this cavity. Multi-physics finite element simulation results are presented. The integration of this design to the cavity cryomodule is described. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI059 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI060 | Cryogenic Test of Double Quarter Wave Crab Cavity for the LHC High Luminosity Upgrade | 3630 |
|
||
Funding: Work partly supported by US LARP, by US DOE under contract No. DE-AC02-05CH11231 and through BSA under contract No. DE-AC02-98CH10886. Research supported by EU FP7 HiLumi LHC - Grant Agreement 284404. A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109. We report the test results of this design. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI060 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI061 | Design of Normal Conducting 704 MHz and 2.1 GHz Cavities for LEReC Linac | 3634 |
|
||
Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energey RHIC electron Cooler (LEReC) is currently under development at BNL. Two normal conducting cavities, a single cell 704 MHz cavity and a 3 cell 2.1 GHz third harmonic cavity, will be used in LEReC for bunch stretching and energy spread correction. In this paper we report the design of these two cavities. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI061 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THXB2 | Crab Cavities: Past, Present, and Future of a Challenging Device | 3643 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with LARP and the U.S. Department of Energy and EU FP7 HiLumi LHC - Grant Agreement 284404 In two-ring facilities operating with a crossing angle collision scheme, the luminosity can be limited due to incomplete overlap of the colliding bunches. Crab cavities are introduced to restore head-on collisions by providing destined opposite deflection to the head and tail of the bunch. Luminosity increase has been demonstrated at KEKB with global crab crossing, and the Large Hardron Collider (LHC) at CERN is currently designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. This paper reviews the challenges in the technology and implementation of crab cavities, discusses experience in past colliders, ongoing R&D and proposed implementations for future facilities such as HL-LHC, CLIC, ILC, and eRHIC/MEIC. |
||
![]() |
Slides THXB2 [4.307 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THXB2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF033 | The First Operation of 56 MHz SRF Cavity in RHIC | 3767 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A 56 MHz superconducting RF cavity has been designed, fabricated and installed in the Relativistic Heavy Ion Collider (RHIC). The cavity operated at 4.4 K with a “quiet helium source” to isolate the cavity from environmental acoustic noise. The cavity is a beam driven quarter wave resonator. It is detuned and damped during injection and acceleration cycles and is brought to operation only at store energy. For a first test operation, the cavity voltage was stabilized at 300 kV with full beam current. Within both Au + Au and asymmetrical Au + He3 collisions, luminosity improvement was detected from direct measurement, and the hourglass effect was reduced. One higher order mode (HOM) coupler was installed on the cavity. We report in this paper on our measurement of a broadband HOM spectrum excited by the Au beam. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF033 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |