Author: White, S.M.
Paper Title Page
TUPWI060 RHIC Polarized Proton-Proton Operation at 100 GeV in Run 15 2384
 
  • V. Schoefer, E.C. Aschenauer, G. Atoian, M. Blaskiewicz, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, Y. Dutheil, W. Fischer, C.J. Gardner, X. Gu, T. Hayes, H. Huang, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, P.H. Pile, A. Poblaguev, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, S.M. White, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  The first part of RHIC Run 15 consisted of nine weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance this run. The largest effort consisted of commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses therefore raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a functioning e-lens which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic capture scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWA014 New Functionality for Beam Dynamics in Accelerator Toolbox (AT) 113
 
  • B. Nash, N. Carmignani, L. Farvacque, S.M. Liuzzo, T.P. Perron, P. Raimondi, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  Accelerator Toolbox is a widely used code for beam dynamic simulations based on Matlab. To continue the development of the code in a collaborative manner, a SourceForge project and SVN repository called atcollab has been established. Here we describe the contributions to atcollab from the ESRF beam dynamics group. Additional modules have been developed: general matching (atmatch), improved plotting (atplot), Touschek lifetime computation via the Piwinski formula, nonlinear dynamics computations such as resonance driving terms, improved reporting of lost particles and improvements and additions to the integration routines. One example of the latter includes diffusion due to quantum fluctuations. Modeling of collective effects may now be performed using pass methods representing a variety of impedance models. Finally, routines to replace the full ring with a compact representation have been developed, facilitating studies in which many turns and many particles are required.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA013 Linear and Nonlinear Optimizations for the ESRF Upgrade Lattice 1422
 
  • N. Carmignani, L. Farvacque, S.M. Liuzzo, B. Nash, T.P. Perron, P. Raimondi, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  The ESRF storage ring will be replaced in 2020 by a new hybrid multi bend achromat lattice with 134 pmrad equilibrium horizontal emittance. To determine the best working point, large scans of tunes and chromaticities have been performed, computing Touschek lifetime and dynamic aperture. From different working points, the multi-objective genetic algorithm NSGA-II has been used to optimize the nonlinear magnets values and some linear optics parameters. The analysis have been carried out on lattices with errors and corrections. The optimizations have produced lattices with longer lifetime and larger dynamic aperture for different working points with positive chromaticities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA014 Influence of errors on the ESRF Upgrade Lattice 1426
 
  • S.M. Liuzzo, J.C. Biasci, N. Carmignani, L. Farvacque, G. Gatta, G. Le Bec, D. Martin, B. Nash, T.P. Perron, P. Raimondi, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  To determine the tolerable alignment and magnetic errors for the ESRF upgrade, we study their influence on Touschek lifetime and dynamic aperture. The correction of each set of errors studied is performed with a commissioning-like procedure, from the search for a closed orbit to the correction of resonance driving terms. Each kind of error is studied independently for each relevant family of magnets. The tolerable values deduced from the analysis are within the practical limits. The impact of the measured and simulated survey errors is also considered, defining the position of the currently installed lattice as the one of least impact for the realignment of X-ray beamlines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA016 Modeling of beam losses at ESRF 1430
 
  • R. Versteegen, P. Berkvens, N. Carmignani, J. Chavanne, L. Farvacque, S.M. Liuzzo, B. Nash, T.P. Perron, P. Raimondi, K.B. Scheidt, S.M. White
    ESRF, Grenoble, France
 
  As the ESRF enters the second phase of its upgrade towards ultra low emittance, the knowledge of the beam loss pattern around the storage ring is needed for radiation safety calculations and for the new machine design optimization. A model has been developed to simulate the Touschek scattering and the scattering of electrons on residual gas nuclei in view of producing a detailed loss map of the machine. Results of simulation for the ESRF are presented and compared with real beam measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA017 Collimation scheme for the ESRF Upgrade 1434
 
  • R. Versteegen, P. Berkvens, N. Carmignani, L. Farvacque, S.M. Liuzzo, B. Nash, T.P. Perron, P. Raimondi, S.M. White
    ESRF, Grenoble, France
 
  The ultra low emittance foreseen for the ESRF Upgrade will translate into a limited Touschek lifetime, increasing substantially the loss rate around the ring compared to the present machine. Consequently it becomes crucial to know the distribution of electron beam losses to optimize the radiation shielding and to protect the insertion devices from radiation damage. Such loss maps of the storage ring can be produced thanks to the simulation of the Touschek scattering process along the lattice. It is shown that about 80 % of the beam losses can be collimated in a few chosen locations only, keeping the resulting lifetime reduction smaller than 10 %.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI053 Polarization Simulations in the RHIC Run 15 Lattice 2372
 
  • F. Méot, H. Huang, Y. Luo, V.H. Ranjbar, G. Robert-Demolaize
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run~14 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF059 RHIC Electron Lenses Upgrades 3830
 
  • X. Gu, Z. Altinbas, S. Binello, D. Bruno, M.R. Costanzo, K.A. Drees, W. Fischer, D.M. Gassner, M. Harvey, J. Hock, K. Hock, Y. Luo, A. Marusic, K. Mernick, C. Mi, R.J. Michnoff, T.A. Miller, M.G. Minty, A.I. Pikin, G. Robert-Demolaize, T. Samms, V. Schoefer, T.C. Shrey, Y. Tan, R. Than, P. Thieberger
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015[1], two electron lenses [2] were used for the first time to partially compensate for the head-on beam-beam effect. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)