Paper | Title | Page |
---|---|---|
MOPMN003 | Dynamic Aperture Studies for the LHC High Luminosity Lattice | 705 |
|
||
Funding: Work supported by the US LHC Accelerator Research Program and the DOE Contract DE-AC02-76SF00515. Research supported by FP7 HiLumi LHC, Grant Agreement 284404, http://hilumilhc.web.cern.ch. Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMN003 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUYB3 | Progress on the Design of the Polarized Medium-energy Electron Ion Collider at JLab | 1302 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s−1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s−1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design. |
||
![]() |
Slides TUYB3 [6.245 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUYB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPJE052 | Bunch Compression in the Driver Linac for the Proposed NSRRC VUV FEL | 1738 |
|
||
A bunch compressor is designed for the S-band driver linac system of the proposed NSRRC VUV free electron laser (FEL). Instead of using a more conventional rf harmonic linearizer, one main feature of this compressor is to use electron linearization optics to correct the nonlinearity in the energy-time correlation of the electron bunch longitudinal phase space. The strategy of compressor design will be discussed by an analytical calculation and particle tracking simulation. The beam dynamics which include the collective instabilities such as the space charge effects, the wake fields and the coherent synchrotron radiation (CSR) effects are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE052 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMA030 | Narrowband Continuously Tunable Radiation in the 5 to 10 Terahertz Range by Inverse Compton Scattering | 1901 |
|
||
Funding: Work supported by U.S. Department of Energy under Grants DE-AC02-76SF00515, DE-FG02-13ER41970 and by DARPA Grant N66001-11-1-4199. 5 to 10 THz has recently become the frontier of THz radiation sources development, pushed by the growing interests of spectroscopy and pump-probe material study in this frequency range. This spectrum “Gap” lies in between the several THz range covered by Electro-Optical crystal based THz generation, and the tens of THz range covered by the difference frequency generation method. The state-of-the-art EO crystal THz source using tilted pulse front technique has been able to reach ~ 100 MV/m peak field strength, large enough to be used in an inverse Compton scattering process to push these low energy photons to shorter wavelengths of the desired 5-10 THz range. The required electron beam energy is within 1~2 MeV, therefore a compact footprint of the whole system. The process would occur coherently granted the electron beam is bunched to a fraction of the radiation wavelengths (several microns). A system operating at KHz or even MHz repetition rate is possible given the low electron energy and thus low RF acceleration gradient required. This work will explore the scheme with design parameters and simulation results. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA030 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMA031 | Dispersive Property of the Pulse Front Tilt of a Short Pulse Optical Undulator | 1904 |
|
||
Funding: Work supported by the US DOE No. DE-AC02-76SF00515. A short pulse laser can be used as an optical undulator to achieve a high-gain and high-brightness X-ray free electron laser (FEL) [1]. To extend the interaction duration of electron and laser field, the electron and the laser will propagate toward each other with an small angle. In addition, to maintain the FEL lasing resonant condition, the laser pulse shape need be flattened and the pulse front will be titled. Due to the short pulse duration, the laser pulse has a broad bandwidth. In this paper, we will first describe the method of generalized Gaussian beam propagation using ray matrix. By applying the Gaussian beam ray matrix, we can study the dispersive property after the pulse front of the short laser is tilted. The results of the optics design for the proposal of SLAC Compton scattering FEL are shown as an example in this paper. [1] C. Chang, et al.,“High-brightness X-ray free-electron laser with an optical undulator by pulse shaping”. Optics Express, Vol. 21, Issue 26, pp. 32013-32018 (2013). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA031 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTY081 | Design of a 6 TeV Muon Collider | 2226 |
|
||
Funding: Work supported by the US Department of Energy contract DE-AC02-76SF00515 A design of a muon collider ring with the center of mass energy of 6 TeV is presented. The ring circumference is about 6.3 km, and the beta functions at collision point are 1 cm in both planes. The ring linear optics, the non-linear chromaticity correction scheme in the Interaction Region (IR), and the additional non-linear field orthogonal knobs are described in detail. The IR magnet specifications are based on the maximum pole tip field of 20 T in dipoles and 15 T in quadrupoles. The results of the beam dynamics optimization for maximum dynamic aperture are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY081 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTY084 | Update on the MEIC Electron Collider Ring Design | 2236 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work also supported by the U.S. DOE Contract No. DE-AC02-76SF00515. The electron collider ring of the Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab is designed to accumulate and store a high-current polarized electron beam for collisions with an ion beam. We consider a design of the electron collider ring based on reusing PEP-II components, such as magnets, power supplies, vacuum system, etc. This has the potential to significantly reduce the cost and engineering effort needed to bring the project to fruition. This paper reports on an electron ring optics design considering the balance of PEP-II hardware parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and electron beam quality in terms of equilibrium emittances. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY084 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPWI031 | Status of the MEIC Ion Collider Ring Design | 2307 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported in part by the US DOE Contract No. DE-AC02-76SF00515. We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI031 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPWI032 | Progress on Optimization of the Nonlinear Beam Dynamics in the MEIC Collider Rings | 2311 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under US DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported by the US DOE Contract DE-AC02-76SF00515. One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 1034 cm-2s-1. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI032 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |