Paper | Title | Page |
---|---|---|
TUYB3 | Progress on the Design of the Polarized Medium-energy Electron Ion Collider at JLab | 1302 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s−1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s−1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design. |
||
![]() |
Slides TUYB3 [6.245 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUYB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTY083 | Conceptual MEIC Electron Ring Injection Scheme using CEBAF as a Full Energy Injector | 2232 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is planning to use the newly upgraded 12 GeV CEBAF 1497 MHz SRF CW recirculating linac as a full-energy injector for the electron collider ring. The electron collider ring is proposed to reuse the 476MHz PEP-II RF system to achieve high installed voltage and high beam power. The MEIC electron injection requires 3-10 (or 12) GeV beam in 3-4μs long bunch trains with low duty factor and high peak current, resulting in strong transient beam loading for the CEBAF. In this paper, we propose an injection scheme that can match the two systems’ frequencies with acceptable injection time, and also address the transient beam loading issue in CEBAF. The scheme is compatible with future upgrade to 952.6 MHz SRF system in the electron ring. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY083 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPWI034 | Capture, Acceleration and Bunching RF Systems for the MEIC Booster and Storage Rings | 2318 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 The MEIC, proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before ramping and transfer to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energy ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI034 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMN025 | Harmonic Resonant Kicker Design for the MEIC Electron Circular Cooler Ring | 2981 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S.DOE Contract No. DE-AC05-06OR23177. Bunched-beam electron cooling of the high-energy ion beam emittance may be a crucial technology for the proposed Medium energy Electron Ion Collider (MEIC) to achieve its design luminosity. A critical component is a fast kicker system in the Circular Ring (CR) that periodically switches electron bunches in and out of the ring from and to the driver Energy Recovery Linac (ERL). Compared to a conventional strip-line type kicker, a quarter wave resonator (QWR) based deflecting structure has a much higher shunt impedance and so requires much less RF power. The cavity has been designed to resonate simultaneously at many harmonic modes that are integer multiples of the fundamental mode. In this way the resulting waveform will kick only a subset of the circulating bunches. In this paper, analytical shunt impedance optimization, the electromagnetic simulations of this type of cavity, as well as tuner and coupler concept designs to produce 5 odd and 5 even harmonics of 47.63MHz will be presented, in order to kick every 10th bunch in a 476.3 MHz bunch train. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN025 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI022 | RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab | 3536 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high current storage rings with many bunches. We present the high level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reduce the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI022 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI028 | Simulation Study Using an Injection Phase-locked Magnetron as an Alternative Source for SRF Accelerators | 3544 |
|
||
As a drop-in replacement for the CEBAF CW klystron system, a 1497 MHz, CW type high efficiency magnetron using injection phase lock and amplitude variation is attractive. Amplitude control using magnetic field trimming and anode voltage modulation has been studied using analytical models and MATLAB/Simulink simulations. Since the 1497 MHz magnetron has not been built yet, previously measured characteristics of a 2.45GHz cooker magnetron are used as reference. The results of linear responses to the amplitude and phase control of a superconducting RF (SRF) cavity, and the expected overall benefit for the current CEBAF and future MEIC RF systems are presented in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI028 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI029 | Cavity Design, Fabrication and Test Performance of 750 MHz, 4-Rod Separators for CEBAF 4-Hall Beam Delivery System | 3548 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. A short version of the original CEBAF normal conducting 4-rod separator cavity has been developed into a 750MHz one * since the concept of simultaneous 4-hall operation for CEBAF is introduced **. This work has been advanced further based on the EM design optimization, bench measurement and by conducting RF-thermal coupled simulation using CST and ANSYS to confirm the cavity tuning and thermal performance. The cavity fabrication used matured technology like copper plating and machining. The cavity flanges, couplers, tuners and cooling channels adopted consistent/compatible hardware with the existing 500MHz cavities. The electromagnetic and thermal design simulations have greatly reduced the prototyping and bench tuning time of the first prototype. Four production cavities have reached a typical 1.94MV kick voltage or 3.0kW wall loss on each cavity after a minor multipactoring or no processing, 7.5% overhead power than the design specification. * R. Kazimi et al., IPAC2013, Shanghai, China, pp 2896-2898. ** R. Kazimi, IPAC2013, Shanghai, China, pp 3502-3504. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI029 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWI030 | Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design | 3551 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. After the electromagnetic design * and the mechanical design ** of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported. * H. Wang, etc., Proceeding of IPAC2013, Shanghai, China, WEPWO073. ** G. Cheng, etc., Proceeding of PAC2013, Pasadena, CA, WEPAC47. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI030 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |