Paper | Title | Page |
---|---|---|
TUAD2 | Comparison between Measured and Computed Temperatures of the Internal High Energy Beam Dump in the CERN SPS | 1373 |
|
||
The SPS high energy internal dump (TIDVG) is designed to receive beam dumps from 102.2 to 450 GeV. The absorbing core is composed of 2.5m graphite, followed by 1m of aluminium, then 0.5m of copper and finally 0.3m of tungsten, all of which is surrounded by a water cooled copper jacket. An inspection during Long Shutdown 1 revealed significant beam induced damage to the Al section of the dump block. Temperature sensors were installed to monitor the new dump replacing the damaged one. This paper summarises the correlation between the temperature measured as a function of the energy deposited and the same temperatures computed in a numerical model combining FLUKA and ANSYS simulations. The goal of this study is the assessment of the thermal contact quality between the beam absorbing blocks and the copper jacket, by analysing the cooling times observed from the measurements and from the thermo-mechanical simulations. This paper presents an improved method to estimate the efficiency and long term reliability of the cooling of this type of design, with the view of optimising the performance of future dump versions. | ||
![]() |
Slides TUAD2 [5.768 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUAD2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTY039 | LHC Transfer Lines and Injection Tests for Run 2 | 2098 |
|
||
The transfer lines for both rings of the LHC were successfully re-commissioned with beam in preparation for the start-up of Run 2. This paper presents an overview of the transfer line and sector tests performed to bring the LHC back into operation after a two-year period of shutdown for consolidation and upgrade. The tests enabled the debugging of critical software and hardware systems and validated changes made to the transfer and injection systems. The beam-based measurements carried out to validate the optics and machine configuration are summarised along with the performance of the hardware systems. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY039 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTY048 | Changes to the Transfer Line Collimation System for the High-Luminosity LHC Beams | 2124 |
|
||
The current LHC transfer line collimation system will not be able to provide enough protection for the high brightness beams in the high-luminosity LHC era. The new collimation system will have to attenuate more and be more robust than its predecessor. The active jaw length of the new transfer line collimators will therefore be 2.1 m instead of currently 1.2 m. The transfer line optics will have to be adjusted for the new collimator locations and larger beta functions at the collimators for absorber robustness reasons. In this paper the new design of the transfer line collimation system will be presented with its implications on transfer line optics and powering, maintainability, protection of transfer line magnets in case of beam loss on a collimator and protection of the LHC aperture | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY048 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTY049 | Protection of Superconducting Magnets in Case of Accidental Beam Losses during HL-LHC Injection | 2128 |
|
||
Funding: Research supported by the High Luminosity LHC project. The LHC injection regions accommodate a system of beam-intercepting devices which protect superconducting magnets and other accelerator components in case of mis-steered injected beam or accidentally kicked stored beam, e.g. due to injection kicker or timing malfunctions. The brightness and intensity increase required by the High Luminosity (HL) upgrade of the LHC necessitates a redesign of some devices to improve their robustness and to reduce the leakage of secondary particle showers to downstream magnets. In this paper, we review possible failure scenarios and we quantify the energy deposition in superconducting coils by means of FLUKA shower calculations. Conceptual design studies for the new protection system are presented, with the main focus on the primary injection protection absorber (TDI) and the adjacent mask (TCDD). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY049 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTY050 | Considerations for the Beam Dump System of a 100 TeV Centre-of-mass FCC hh Collider | 2132 |
|
||
A 100 TeV centre-of-mass energy frontier proton collider in a new tunnel of 80–100 km circumference is a central part of CERN’s Future Circular Colliders (FCC) design study. One of the major challenges for such a machine will be the beam dump system, which for each ring will have to reliably abort proton beams with stored energies in the range of 8 Gigajoule, more than an order of magnitude higher than planned for HL-LHC. The transverse proton beam energy densities are even more extreme, a factor of 100 above that of the presently operating LHC. The requirements for the beam dump subsystems are outlined, and the present technological limitations are described. First concepts for the beam dump system are presented and the feasibility is discussed, highlighting in particular the areas in which major technological progress will be needed. The potential implications on the overall machine and other key subsystems are described, including constraints on filling patterns, interlocking, beam intercepting devices and insertion design. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY050 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTY051 | Injection Protection Upgrade for the HL-LHC | 2136 |
|
||
The injector complex of the LHC is undergoing important changes in the light of the LIU project to provide brighter beams to the LHC. For this reason and as part of the High Luminosity LHC project the injection protection system of the LHC will be upgraded in the Long Shutdown 2 (2018 - 2019) to be able to protect downstream elements against injection failures with the high brightness, high intensity HL-LHC beams. The upgraded LHC injection protection system will consist of a segmented injection protection absorber TDIS, and auxiliary collimators and masks. The layout modifications are described, and the machine element protection and absorber jaw robustness studies are presented for the new systems. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY051 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTY052 | New Method for Validation of Aperture Margins in the LHC Triplet | 2140 |
|
||
Funding: Work supported by COFUND grant PCOFUND-GA-2010-267194 Safety of LHC equipment including superconducting magnets depends not only on the proper functioning of the systems for machine protection, but also on the accurate adjustment of the protective devices such as collimators. In case of a failure of the extraction kicker magnets, which are part of the beam dumping system, it is important to ensure protection of the superconducting triplet magnets from missteered beam. The magnets are located to the right of Interaction Point 5 (IP5) and are protected by one set of collimators in the beam dumping insertion in IR6 and another set close to the triplet magnets. In this paper, a new method for verification of the correct collimator position with respect to the aperture is presented. It comprises the application of an extended orbit bump with identical trajectory as the beam trajectory after a deflection by the beam dump kickers. By further increasing the bump amplitude and successively moving in/out the collimators in the region of interest, the accurate positioning of the collimators can be validated. The effectiveness of the method for LHC IP5 and IP1 and both beams is discussed |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY052 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWA039 | The AWAKE Electron Primary Beam Line | 2584 |
|
||
The AWAKE project at CERN is planned to study proton driven plasma wakefield acceleration. The proton beam from the SPS will be used in order to drive wakefields in a 10 m long Rb plasma cell. In the first phase of this experiment, scheduled in 2016, the self-modulation of the proton beam in the plasma will be studied in detail, while in the second phase an external electron beam will be injected into the plasma wakefield to probe the acceleration process. The installation of AWAKE in the former CNGS experimental area and the required optics flexibility define the tight boundary conditions to be fulfilled by the electron beam line design. The transport of low energy (10-20 MeV) bunches of 1.25·109 electrons and the synchronous copropagation with much higher intensity proton bunches (3E11) determines several technological and operational challenges for the magnets and the beam diagnostics. The current status of the electron line layout and the associated equipments are presented in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA039 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMN068 | Upgrade of the CERN SPS Extraction Protection Elements TPS | 3083 |
|
||
In 2006 the protection devices upstream of the septa in both extraction channels of the CERN SPS to the LHC were installed. Since then, new beam parameters have been proposed for the SPS beam towards the LHC in the framework of the LIU project. The mechanical parameters and assumptions on which these protection devices presently have been based, need validation before the new upgraded versions can be designed and constructed. The paper describes the design assumptions for the present protection device and the testing program for the TPSG4 at HiRadMat to validate them. Finally the requirements and the options to upgrade both extraction protection elements in the SPS are described. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN068 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF089 | Beam Transfer to the FCC-hh Collider from a 3.3 TeV Booster in the LHC Tunnel | 3901 |
|
||
Transfer of the high brightness 3.3 TeV proton beams from the High Energy Booster (HEB) to the 100 TeV centre-of-mass proton collider in a new tunnel of 80–100 km circumference will be a major challenge. The extremely high stored beam energy means that machine protection considerations will constrain the functional design of the transfer, for instance in the amount of beam transferred, the kicker rise and fall times and hence the collider filling pattern. In addition the transfer lines may need dedicated insertions for passive protection devices. The requirements and constraints are described, and a first concept for the 3.3 TeV beam transfer between the machines is outlined. The resulting implications on the parameters and design of the various kicker systems are explored, in the context of the available technology. The general features of the transfer lines between the machines are described, with the expected constraints on the collider layout and insertion lengths. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF089 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF096 | Origin of the Damage to the Internal High Energy Beam Dump in the CERN SPS | 3927 |
|
||
The high energy beam dump in the SPS has to deal with beams from 105 to 450 GeV/c and intensities of up to 4 ×1013 protons. An inspection during the last shutdown revealed significant damage to the Al section of the dump block. This paper summarizes the results of the analysis revealing the most likely cause of the damage to the beam dump. The implications for future SPS operation will also be briefly discussed, together with the short-term solution put in place. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF096 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF097 | Feasibility Study of a New SPS Beam Dump System | 3930 |
|
||
The CERN Super Proton Synchrotron (SPS) presently uses an internal beam dump system with two separate blocks to cleanly dispose of low and high energy beams. In view of the increased beam power and brightness needed for the LHC Injector Upgrade project for High Luminosity LHC (HL-LHC), the performance of this internal beam dump system has been reviewed for future operation. Different possible upgrades of the beam dumping system have been investigated. The initially considered solution for the SPS Beam Dump System is to design a new, dedicated external system, with a dump block in a shielded cavern separated from the machine ring. Unfortunately this solution is not feasible with the present technology. In this paper, the design requirements and the possible solutions are investigated, including considering a new internal beam dump in the Long Straight Section 5 (LSS5). | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF097 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF098 | SPS-to-LHC Transfer Lines Loss Map Generation Using PyCollimate | 3934 |
|
||
The Transfer Lines (TL) linking the Super Proton Synchrotron (SPS) to the Large Hadron Collider (LHC) are both equipped with a complete collimation system to protect the LHC against mis-steered beams. During the setting up of these collimators, their gaps are positioned to nominal values and the phase-space coverage of the whole system is checked using a manual validation procedure. In order to perform this setting-up more efficiently and more reliably, the simulated loss maps of the TLs will be used to validate the collimator positions and settings. In this paper, the simulation procedure for the generation of TL loss maps is described, and a detailed overview of the new scattering routine (pycollimate) is given. Finally, the results of simulations benchmark with another scattering routine are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF098 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPF099 | Upgrade of the SPS Ion Injection System | 3938 |
|
||
As part of the LHC Injectors Upgrade Project (LIU) the injection system into the SPS will be upgraded for the use with ions. The changes will include the addition of a Pulse Forming Line parallel to the existing PFN to power the kicker magnets MKP-S. With the PFL a reduced magnetic field rise time of 100 ns should be reached. The missing deflection strength will be given by two new septum magnets MSI-V, to be installed between the existing septum MSI and the kickers MKP-S. A dedicated ion dump will be installed downstream of the injection elements. The parameter lists of the elements and studies concerning emittance blow-up coming from the injection system are presented. The feasibility of the 100 ns kicker rise time and the small ripple of the septum power converter are presented. Material studies of the ion dump are presented together with the radiation impact. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF099 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |