Paper |
Title |
Page |
MOPJE070 |
Reduction of Electron Cloud in Particle Accelerator Beampipes Studied by RF Multipacting |
472 |
|
- R. Leber, F. Caspers, P. Costa Pinto, M. Taborelli
CERN, Geneva, Switzerland
|
|
|
For a given beam structure, chamber geometry and magnetic field configuration, the electron cloud (EC) intensity depends on the Secondary Electron Yield (SEY) of the beam pipe. The reduction of the EC density as a function of machine operation time (scrubbing) is attributed to the growth of a low SEY carbon film induced by electron bombardment. In this paper, we study the time evolution of the conditioning of stainless steel beam pipes in a laboratory setup. The EC or multipacting is induced by Radio-Frequency (RF) fields in a coaxial resonator under vacuum. Strip detectors are used to monitor the current of the EC. Induced pressure rise is simultaneously detected. The multipacting intensity shows a linear dependence on the positive DC bias voltage up to 1000 V, applied to the central electrode. An accelerated conditioning is observed for the applied bias voltage. The SEY of samples exposed to the EC is measured and the surface composition is monitored by X-ray Photoelectron Spectroscopy. The measured SEY, surface composition and multipacting behaviour are well correlated. The injection of acetylene and dodecane during multipacting proved to be ineffective in the conditioning.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE070
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPJE071 |
New Electron Cloud Detectors for the CERN Proton Synchrotron |
476 |
|
- C. Yin Vallgren, P. Chiggiato, S.S. Gilardoni, H. Neupert, M. Taborelli
CERN, Geneva, Switzerland
|
|
|
Electron cloud (EC) has already been observed during normal operation of the PS using classical shielded button pick-up detectors in drift sections. In the context of the LHC Injector Upgrade (LIU project), similar measurements are also needed for the combined function magnets of the machine, where the access to the vacuum chamber is strongly limited by the presence of the yoke. Two new electron cloud detectors have been studied, developed, and installed during the Long Shutdown (LS1) in one of such magnets. The first is based on current measurement by using a shielded button-type pick-up with a special geometry to reach the bottom surface of the vacuum pipe embedded in the magnet. The second one relies on a newly developed measurement method based on detection of the photons, which are emitted by cathodoluminescence from the electron cloud impinging on the vacuum chamber walls. Part of the emitted photons is collected through a quartz window by a Micro-Channel Plate Photomultiplier Tube (MCP-PMT). First results obtained during machine development runs show the feasibility of the photon detection scheme. The results are discussed and compared with pick-up measurements.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE071
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPJE040 |
Surface Characterization at CERN of Photocathodes for Photoinjector Applications |
1703 |
|
- I. Martini, E. Chevallay, V. Fedosseev, C. Heßler, H. Neupert, V. Nistor, M. Taborelli
CERN, Geneva, Switzerland
|
|
|
R&D on photocathodes takes place at CERN within the CLIC (Compact Linear Collider) project. Photocathodes are produced as thin films on Oxygen Free copper substrate using a co-deposition technique, and characterized in a dedicated laboratory with a DC photo-electron gun. A new UHV carrier vessel compatible with CERN’s XPS (X-ray Photoelectron Spectroscopy) analysis equipment has been commissioned and is used to transport photocathodes from the production laboratory to perform a systematic study of different compounds used as photoemissive materials. In this paper photocathodes used in a RF photoinjector will be characterized and the correlation of their surface properties with their performance will be investigated.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE040
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPHA019 |
Development and Production of Non-evaporable Getter Coatings for MAX IV |
3145 |
|
- P. Costa Pinto, B. Bártová, B. Holliger, S. Marques Dos Santos, V. Nistor, A. Sapountzis, M. Taborelli, I. Wevers
CERN, Geneva, Switzerland
- J. Ahlbäck, E. Al-Dmour, M.J. Grabski, C. Pasquino
MAX-lab, Lund, Sweden
|
|
|
MAX IV is presently under construction at Lund, Sweden, and the first beam for the production of synchrotron radiation is expected to circulate in 2016. The whole set of 3-GeV ring beam pipes is coated with Ti-Zr-V Non Evaporable Getter (NEG) thin film in order to fulfil the average pressure requirement of 1x10-9 mbar, despite the compact magnet layout and the large aspect ratio of the vacuum chambers. In this work, we present the optimisations of the coating process performed at CERN to coat different geometries and mechanical assembling used for the MAX IV vacuum chambers; the morphology of the thin films is analysed by Scanning Electron Microscopy; the composition and thickness is measured by Energy Dispersive X-ray analysis; the activation of the NEG thin film is monitored by X-ray Photoemission Spectroscopy; the vacuum performance of the coated beam pipes is evaluated by the measurement of hydrogen sticking coefficient. The results of the coating production characterisation for the 84 units coated at CERN are presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA019
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPHA020 |
Titanium Coating of Ceramics for Accelerator Applications |
3148 |
|
- W. Vollenberg, P. Costa Pinto, B. Holliger, A. Sapountzis, M. Taborelli
CERN, Geneva, Switzerland
|
|
|
Titanium thin films can be deposited on ceramics, in particular alumina, without adherence problems. Even after air exposure their secondary electron yield is low compared to alumina and can be further reduced by conditioning or beam scrubbing. In addition, depending on the film thickness, titanium provides different surface resistances that fulfil requirements of ceramics in particle accelerators. Titanium thin films (MOhm square range) are used to suppress electron multipacting and evacuate charges from ceramic surfaces. Thicker films (5-25 Ω square range) are applied to lower the surface resistance so that the beam impedance is reduced. In this contribution, we present the results of a development aimed at coating 2-meter long alumina vacuum chambers with a uniform surface resistivity by a dedicated DC magnetron sputtering configuration.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA020
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPHA021 |
Status of HIE-ISOLDE SC Linac Upgrade |
3151 |
|
- A. Sublet, L. Alberty, K. Artoos, S. Calatroni, O. Capatina, M.A. Fraser, N.M. Jecklin, Y. Kadi, P. Maesen, G.J. Rosaz, K.M. Schirm, M. Taborelli, M. Therasse, W. Venturini Delsolaro, P. Zhang
CERN, Geneva, Switzerland
|
|
|
The HIE-ISOLDE upgrade project at CERN aims at increasing the energy of radioactive beams from 3MeV/u up to 10 MeV/u with mass-to-charge ratio in the range 2.5-4.5. The objective is obtained by replacing part of the existing normal conducting linac with superconducting Nb/Cu cavities. The new accelerator requires the production of 32 superconducting cavities in three phases: 10 high-beta cavities for phase 1 (2016), 10 high-beta cavities for phase 2 (2017) and possibly 12 low-beta cavities for phase 3 (2020). Half of the phase 1 production is completed with 5 quarter-wave superconducting cavities ready to be installed in the first cryomodule. The status of the cavity production and the RF performance are presented. The optimal linac working configuration to minimize cryogenic load and maximize accelerating gradient is discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA021
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPHA022 |
Characterization of Nb Coating in HIE-ISOLDE QWR Superconducting Accelerating Cavities by means of SEM-FIB and TEM |
3155 |
|
- B. Bártová, S. Calatroni, A. Sublet, M. Taborelli
CERN, Geneva, Switzerland
- A.B. Aebersold, D.T.L. Alexander, M. Cantoni
EPFL, Lausanne, Switzerland
|
|
|
The Quarter Wave Resonators (QWR) high-β cavities (0.3m diameter and 0.9m height) are made from OFE 3D-forged copper and are coated by DC-bias diode sputtering with a thin superconducting layer of niobium. The Nb film thickness, morphology, purity and quality are critical parameters for RF performances of the cavity. They have been investigated in a detailed material study. The coating structure at different positions along a test cavity was observed by cross-section imaging using SEM-FIB instrument. The samples from the top of the cavity showed presence of unexpected porosities, whose volume was investigated using FIB tomography. TEM lamella was prepared for two samples (top part and inner conductor of the cavity) to study in detail the grain orientation in the coating, its chemical composition and structure. The 14-layer structure in thick coating was indeed evidenced by the TEM analysis. Chemical mapping revealed the presence of a few nm in size copper precipitates close to the Nb/Cu interface and a passivating oxide layer of 10 nm thickness on top of the coating and around porosities. However no impurities or interface layer along the coating profile were present.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA022
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPF091 |
Detailed Studies of Beam Induced Scrubbing in the CERN-SPS |
3908 |
|
- G. Iadarola, H. Bartosik, T. Bohl, B. Goddard, G. Kotzian, K.S.B. Li, L. Mether, G. Rumolo, M. Schenk, E.N. Shaposhnikova, M. Taborelli
CERN, Geneva, Switzerland
|
|
|
In the framework of the LHC Injectors Upgrade (LIU) program, it is foreseen to take all the necessary measures to avoid electron cloud effects in the CERN-SPS. This can be achieved by either relying on beam induced scrubbing or by coating the vacuum chambers with intrinsically low Secondary Electron Yield (SEY) material over a large fraction of the ring. To clearly establish the potential of beam induced scrubbing, and to eventually decide between the two above options, an extensive scrubbing campaign is taking place at the SPS. Ten days in 2014 and two full weeks in 2015 are devoted to machine scrubbing and scrubbing qualification studies. This paper summarizes the main findings in terms of scrubbing efficiency and reach so far, addressing also the option of using a special doublet beam and its implication for LHC.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2015-THPF091
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|