Author: Salemme, R.
Paper Title Page
WEPHA006 Recommissioning of the COLDEX Experiment at CERN 3109
 
  • R. Salemme, V. Baglin, F. Bellorini, G. Bregliozzi, K. Brodzinski, P. Chiggiato, P. Costa Pinto, P. Gomes, A. Gutierrez, V. Inglese, B. Jenninger, R. Kersevan, E. Michel, M. Pezzetti, B. Rio, A. Sapountzis
    CERN, Geneva, Switzerland
 
  COLDEX (Cold bore Experiment), installed in the Super Proton Synchrotron (SPS) at CERN, is a test vacuum sector used in 2001-2004 to validate the Large Hadron Collider (LHC) cryogenic vacuum system with LHC type proton beams. Its cryostat houses a 2.2 m long copper perforated beam screen surrounded by a stainless steel cold bore, both individually temperature controlled down to 5 and 3 K, respectively. In the framework of the development for the High Luminosity upgrade of the LHC (HL-LHC), COLDEX has been re-commissioned in 2014. The objective of this re-commissioning is the validation of the performance of amorphous carbon coatings at cryogenic temperature with LHC type beams. The existing COLDEX beam screen has been dismounted and carbon coated, while a complete overhaul of the vacuum, cryogenic and control systems has been carried out. This contribution describes the phases of re-commissioning and reviews the current experimental set-up. An overview of the possible measurements with COLDEX, in view of its HL-LHC experimental program, is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA007 Amorphous Carbon Coatings at Cryogenic Temperatures with LHC Type Beams: First Results with the COLDEX Experiment 3112
 
  • R. Salemme, V. Baglin, G. Bregliozzi, P. Chiggiato, R. Kersevan
    CERN, Geneva, Switzerland
 
  Extrapolations of electron cloud data from the Large Hadron Collider (LHC) Run 1 to the High Luminosity upgrade (HL-LHC) beam parameters predict an intolerable increase of heat load on the beam screens of the inner triplets. Amorphous carbon (a-C) coating of the beam screen surface is proposed to reduce electron cloud production, thereby minimising its dissipated power. To validate this solution, the COLDEX experiment has been re-commissioned. Such equipment mimics the performance of the LHC cold bore and beam screen cryogenic vacuum system in presence of LHC beams in the Super Proton Synchrotron (SPS). The main objective of the study is the performance evaluation of a-C coatings while operating the beam screen in the 10 to 60 K temperature range and cold bore below 3 K. This paper reviews the status of COLDEX and the results obtained during its first experimental runs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)