Author: Kester, O.K.
Paper Title Page
TUXB2 Upgrade of the Unilac for Fair 1281
 
  • L. Groening, A. Adonin, R. M. Brodhage, X. Du, R. Hollinger, O.K. Kester, S. Mickat, A. Orzhekhovskaya, B. Schlitt, G. Schreiber, H. Vormann, C. Xiao
    GSI, Darmstadt, Germany
  • H. Hähnel, U. Ratzinger, A. Seibel, R. Tiede
    IAP, Frankfurt am Main, Germany
 
  The UNIversal Linear Accelerator (UNILAC) at GSI serves as injector for all ion species from protons to uranium since four decades. Its 108 MHz Alvarez type DTL providing acceleration from 1.4 MeV/u to 11.4 MeV/u has suffered from material fatigue. The DTL will be replaced by a completely new section with almost same design parameters, i.e. pulsed current of up to 15 mA of 238U28+ at 11.4 MeV/u. A dedicated terminal & LEBT for operation with 238U4+ is currently constructed. The uranium sources need to be upgraded in order to provide increased beam brilliances and for operation at 3 Hz. In parallel a 70 MeV / 70 mA proton linac based on H-mode cavities is under design and construction. This contribution will also give a brief summary of the overall status of the FAIR project.  
slides icon Slides TUXB2 [4.634 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUXB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBB2 The Accelerator Facility of the Facility for Antiproton and Ion Research 1343
 
  • P.J. Spiller, F. Becker, A. Dolinskyy, L. Groening, O.K. Kester, K. Knie, H. Reich-Sprenger, W. Vinzenz, M. Winkler
    GSI, Darmstadt, Germany
  • D. Prasuhn
    FZJ, Jülich, Germany
 
  The accelerators of the Facility for Antiproton and Ion Research – FAIR are under construction. The sophisticated system of accelerators is designed to produce stable and secondary beams with a significant variety of intensities and beam energies. FAIR will explore the intensity frontier of heavy ion accelerators and the beams for the experiments will have highest beam quality for cutting edge physics to be conducted. The main driver accelerator of FAIR will be the SIS100 synchrotron. In order to produce the intense rare isotope beams (RIB) at FAIR, a unique superconducting fragment separator is under construction. A system of storage rings will collect and cool secondary particles from the FAIR. Intense work on test infrastructure for the huge number of superconducting magnets of the FAIR machines is ongoing at GSI and several partner labs. In addition, the GSI accelerator facility is being prepared to serve as injector for the FAIR accelerators. As the construction of the FAIR accelerators and the procurement has started, an overview of the designs, procurements plans and infrastructure preparation can be provided.  
slides icon Slides TUBB2 [4.653 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUBB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF009 Pumping Properties of Cryogenic Surfaces in SIS100 3696
 
  • L.H.J. Bozyk, O.K. Kester, P.J. Spiller
    GSI, Darmstadt, Germany
  • F. Chill, O.K. Kester
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by Hic4Fair and BMBF (FKZ:05P12RDRBK).
The synchrotron SIS100 of the planned FAIR facility will provide heavy ion beams of highest intensities. The required low charge states are subject to enhanced charge exchange processes in collisions with residual gas molecules. Therefore, highest vacuum quality is crucial for a reliable operation and minimal beam loss. The generation of the required low gas densities relies on the pumping capabilities of the cryogenic beam pipe walls. Most typical gas components in ultra high vacuum are bound by cryocondensation at LHe temperatures, resulting in ultimate low pressures with almost infinite pumping capacity. Hydrogen can not be crycondensated to acceptable low pressures. But if the surface coverage is sufficiently low, it can get bound by cryoadsorption. The pumping capabilities of cryogenic walls for Hydrogen have been investigated for SIS100-like conditions. The measurement results have been used in dynamic vacuum simulations at heavy ion operation. The simulation results are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF015 Status of the FAIR Heavy Ion Synchrotron Project SIS100 3715
 
  • P.J. Spiller, U. Blell, L.H.J. Bozyk, J. Ceballos Velasco, T. Eisel, E.S. Fischer, O.K. Kester, H.G. König, H. Kollmus, V. Kornilov, P. Kowina, J.P. Meier, A. Mierau, C. Mühle, C. Omet, D. Ondreka, N. Pyka, H.R. Ramakers, P. Rottländer, C. Roux, P. Schnizer, St. Wilfert
    GSI, Darmstadt, Germany
 
  The procurements of major technical components for the heavy ion synchrotron SIS100 are progressing. Especially the production of the long lead items, the main superconducting dipole and quadrupole magnets and the main Rf systems could be started. The system layout for the injection system and the specifications for all injection devices has been completed. In parallel, the Digital Mock-Up (DMU) and design for major extraction components has been developed. Certain technical challenges observed during the acceptance tests of First of Series (FOS) components and risks and their mitigation will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF027 Ten Gap Model of a New Alvarez DTL Cavity at GSI 3748
 
  • A. Seibel, O.K. Kester
    IAP, Frankfurt am Main, Germany
  • X. Du, L. Groening, S. Mickat
    GSI, Darmstadt, Germany
 
  In order to meet the challenges of the FAIR project at GSI requiring highest beam intensities an upgrade of the existing Universal Linear Accelerator (UNILAC) is planned. The 108 MHz cavities will be replaced by new rf-structures of the same frequency. Simulations are done to improve the rf-properties. The geometry of the drift tubes is to be changed to a smoother curvature to reach a homogeneous surface field distribution and higher shunt impedances. To check the necessity of cooling channels, simulations on the temperature distribution at the drift tubes and stems are conducted. A test bench for low power rf-measurements with a 10 gap aluminum model (scale 1:3) is under construction. The modular mechanical design of the model will allow probing experimentally a wide range of drift tube and stem geometries. With the bead pull method the electrical field distribution will be measured as well as the field stability with respect to parasitic modes. Additionally, appropriate locations along the cavity to place fixed and dynamic rf-frequency tuners will be determined.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)