Author: Denz, R.
Paper Title Page
MOPTY054 Fibre Monitoring System for the Beam Permit Loops at the LHC and Future Evolution of the Beam Interlock System 1054
 
  • C. García-Argos, R. Denz, S. Gabourin, C. Martin, B. Puccio, A.P. Siemko
    CERN, Geneva, Switzerland
 
  The optical fibres that transmit the beam permit loop signals at the CERN accelerator complex are deployed along radiation areas. This may result in increased attenuation of the fibres, which reduces the power margin of the links. In addition, other events may cause the links to not function properly and result in false dumps, reducing the availability of the accelerator chain and affecting physics data taking. In order to evaluate the state of the fibres, an out-of-band fibre monitoring system is proposed, working in parallel to the actual beam permit loops. The future beam interlock system to be deployed during LHC long shutdown 2 will implement online, real-time monitoring of the fibres, a feature the current system lacks. Commercial off-the-shelf components to implement the optical transceivers are proposed whenever possible instead of ad-hoc designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN071 Enhanced Diagnostic Systems for the Supervision of the Superconducting Circuits of the LHC 3090
 
  • R. Denz, Z. Charifoulline, K. Dahlerup-Petersen, A.P. Siemko, J. Steckert
    CERN, Geneva, Switzerland
 
  Being an integral part of the protection system for the superconducting circuits of the LHC, the data acquisition systems used for the circuit supervision underwent a substantial upgrade during the first long shutdown of the LHC. The sampling rates and resolution of most of the acquired signals increased significantly. Newly added measurements channels like for the supervision of the quench heater circuits of the LHC main dipoles allow identifying specific fault states. All LHC main circuits are meanwhile equipped with earth voltage feelers allowing monitoring the electrical insulation strength, especially during the fast discharges. The protection system for the bus-bar splices is now capable to operate in different modes. By this measure, it is possible fulfilling the requirements for different specific tests like the warm bus-bar measurements and current stabilizer continuity measurements (CSCM) without field interventions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)