Author: Bogomyagkov, A.V.
Paper Title Page
TUPTY018 Interaction region for crab waist scheme of the Future Electron-Positron Collider (CERN) 2034
 
  • A.V. Bogomyagkov, E.B. Levichev
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work is supported by the Ministry of Education and Science of the Russian Federation
Design study of the accelerator that would fit 80-100~km tunnel called Future Circular Colliders (FCC) includes high-luminosity e+e- collider (FCC-ee) with center-of-mass energy from 90 to 350~GeV to study Higgs boson properties and perform precise measurements at the electroweak scale. Crab waist interaction region provides collisions with luminosity higher than 2×1036~cm-2sec-1 at beam energy of 45~GeV. The small values of the beta functions at the interaction point and distant final focus lenses are the reasons for high nonlinear chromaticity limiting energy acceptance of the whole ring. The paper describes interaction region for crab waist collision scheme in the FCC-ee, principles of tuning the chromaticity correction section in order to provide large energy acceptance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY059 First Considerations on Beam Optics and Lattice Design for the Future Electron-Positron Collider FCC-ee 2162
 
  • B. Härer, B.J. Holzer, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov
    BINP SB RAS, Novosibirsk, Russia
 
  The Future Circular Collider (FCC) study includes the design of a 100-km electron positron collider (FCC-ee) with collision energies between 90 GeV and 350 GeV. This paper describes first aspects of the design and the optics of the FCC-ee collider, optimised for four different beam energies. Special emphasis is put on the need for a highly flexible magnet lattice in order to achieve the required beam emittances in each case and on the layout of the interaction region that will have to combine an advanced mini-beta concept, an effective beam separation scheme and a local chromaticity control to optimise the momentum acceptance and dynamic aperture of the ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY060 The FCC-ee Study: Progress and Challenges 2165
 
  • M. Koratzinos
    DPNC, Genève, Switzerland
  • S. Aumon, C. Cook, A. Doblhammer, B. Härer, B.J. Holzer, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov, E.B. Levichev, D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • L.E. Medina Medrano
    UGTO, Leon, Mexico
  • U. Wienands
    SLAC, Menlo Park, California, USA
 
  The FCC (future circular collider) study represents a vision for the next large project in high energy physics, comprising a 80-100 km tunnel that can house a future 100TeV hadron collider. The study also includes a high luminosity e+e collider operating in the centre-of-mass energy range of 90-350 GeV as a possible intermediate step, the FCC-ee. The FCC-ee aims at definitive electro-weak precision measurements of the Z, W, H and top particles, and search for rare phenomena. Although FCC-ee is based on known technology, the goal performance in luminosity and energy calibration make it quite challenging. During 2014 the study went through an exploration phase and during the next three years a conceptual design report will be prepared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY061 Combined Operation and Staging Scenarios for the FCC-ee Lepton Collider 2169
 
  • M. Benedikt, B.J. Holzer, E. Jensen, R. Tomás, J. Wenninger, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov, E.B. Levichev, D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • K. Ohmi, K. Oide
    KEK, Ibaraki, Japan
  • U. Wienands
    SLAC, Menlo Park, California, USA
 
  FCC-ee is a proposed high-energy electron positron circular collider that would initially occupy the 100-km FCC tunnel that will eventually house the 100 TeV FCC-hh hadron collider. The parameter range for the e+/e collider is large, operating at a cm energy from 90 GeV (Z-pole) to 350 GeV (t-tbar production) with the maximum beam current ranging from 1.5 A to 6 mA for each beam, corresponding to a synchrotron radiation power of 50 MW and a radiative energy loss varying from ~30 MeV/turn to ~7500 MeV/turn. This presents challenges for the rf system due to the varying rf voltage requirements and beam loading conditions. In this paper we present a possible gradual evolution of the FCC-ee complex by step-wise expansion, and possibly reconfiguration, of the superconducting RF system. The performance attainable at each step is discussed, along with the possible advantages and drawbacks.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)