Author: Teytelman, D.
Paper Title Page
TUPRI074 First Results of the New Bunch-by-bunch Feedback System at ANKA 1739
 
  • E. Hertle, N. Hiller, E. Huttel, B. Kehrer, A.-S. Müller, A.-S. Müller, N.J. Smale
    KIT, Eggenstein-Leopoldshafen, Germany
  • M. Höner
    DELTA, Dortmund, Germany
  • D. Teytelman
    Dimtel, San Jose, USA
 
  A new digital three dimensional fast bunch by bunch feedback system has been installed and commissioned at ANKA. Immediate improvements to stored current and lifetime were achieved for normal user operation. For this, the feedback has to be running during the injection and the energy ramp to 2.5 GeV. Additionally, the feedback system was also incorporated into the diagnostic tool-set at ANKA and opened up new possibilities of automated and continuous measurements of certain beam parameters. The system can operate in different modes such as the low alpha operation mode, which has different requirements on the feedback system compared to normal user operation. Results on the various aspects will be presented as well as future improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME062 A New Digital LLRF System for a Fast Ramping Storage Ring 2418
 
  • M. Schedler, F. Frommberger, W. Hillert, D. Proft, D. Sauerland
    ELSA, Bonn, Germany
  • D. Teytelman
    Dimtel, San Jose, USA
 
  At the Electron Stretcher Facility ELSA of Bonn University, an upgrade of the maximum stored beam current from 20 mA to 200 mA is planned. The storage ring operates applying a fast energy ramp of 6 GeV/s from 1.2 GeV to 3.5 GeV and a slow extraction afterwards over a few seconds to the hadron physics experiments. The intended upgrade is mainly limited by the coupled-bunch instabilities and the ability of bunch-by-bunch feedback systems to suppress such instabilities. In order to achieve optimum bunch-by-bunch feedback performance, the beam phase with respect to the master oscillator and the synchrotron frequency have to stay constant. This paper reports on a new high performance low level RF (LLRF) system. The system stabilizes the cavity field and is capable of executing fast voltage and phase ramps. The LLRF uses FPGA-based digital signal processing and includes cavity tuner control as well as fast interlocks and extensive diagnostics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)