Author: Paoluzzi, M.M.
Paper Title Page
TUPRI060 Impedance Studies for the PS Finemet® Loaded Longitudinal Damper 1708
 
  • S. Persichelli, M. Migliorati, M.M. Paoluzzi, B. Salvant
    CERN, Geneva, Switzerland
 
  The impedance of the Finemet® loaded longitudinal damper cavity, installed in the CERN Proton Synchrotron straight section 02 during the Long Shutdown 2013-2014, has been evaluated. Time domain simulations with CST Particle Studio have been performed in order to get the longitudinal and transverse impedance of the device and make a comparison with the longitudinal impedance that was measured for a single cell prototype.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME048 Status and Plans for Linac4 Installation and Commissioning 3332
 
  • M. Vretenar, A. Akroh, L. Arnaudon, P. Baudrenghien, G. Bellodi, J.C. Broere, O. Brunner, J.F. Comblin, J. Coupard, V.A. Dimov, J.-F. Fuchs, A. Funken, F. Gerigk, E. Granemann Souza, K. Hanke, J. Hansen, I. Kozsar, J.-B. Lallement, L. Lenardon, J. Lettry, A.M. Lombardi, C. Maglioni, Ø. Midttun, B. Mikulec, D. Nisbet, M.M. Paoluzzi, U. Raich, S. Ramberger, F. Roncarolo, C. Rossi, J.L. Sanchez Alvarez, R. Scrivens, J. Tan, C.A. Valerio, J. Vollaire, R. Wegner, S. Weisz, M. Yarmohammadi Satri, F. Zocca
    CERN, Geneva, Switzerland
 
  Linac4 is a normal conducting 160 MeV H linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam intensity in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to the connection of Linac4 to the PSB that will take place during the next long LHC shut-down.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME065 Beam Test of the CERN PSB Wide-band RF System Prototype in the J-PARC MR 3385
 
  • F. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Hasegawa, C. Ohmori, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
  • M.M. Paoluzzi
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injectors Upgrade project (LIU), a complete replacement of the existing narrow-band rf systems of CERN PSB with wide-band magnetic alloy (MA) loaded rf systems is in progress. A single gap MA loaded rf system prototype, which uses solid-state power amplifier and includes fast rf feedback for beam loading compensation, has been installed in the J-PARC MR to investigate the system behavior with high intensity proton beams. We report the wake voltage measurement results with and without fast rf feedback. In addition to the fast feedback, the rf feedforward method is under consideration to compensate the heavy beam loading more effectively. Preliminary beam test results with feedforward are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)