Author: Ekelöf, T.J.C.
Paper Title Page
WEPRO117 The Accumulator of the ESSnuSB for Neutrino Production 2245
 
  • E.H.M. Wildner, J. Jonnerby, J.-P. Koutchouk, M. Martini, H.O. Schönauer
    CERN, Geneva, Switzerland
  • E. Bouquerel, M. Dracos, N. Vassilopoulos
    IPHC, Strasbourg Cedex 2, France
  • T.J.C. Ekelöf, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • M. Eshraqi, M. Lindroos, D.P. McGinnis
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a research centre based on the world’s most powerful neutron source currently under construction in Lund, Sweden, using 2.0 GeV, 2.86 ms long proton pulses at 14 Hz for the spallation facility (5MW on target). The possibility to pulse the linac at 28 Hz to deliver, in parallel with the spallation neutron production, a very intense, cost effective, high performance neutrino beam. The high current in the horns of the target system for the neutrino production requires proton pulses far shorter than the linac pulse. Therefore an accumulator ring is required after the linac to produce the shorter pulses. Charge exchange injection of an H beam from the linac would be used. The Linac would deliver 1.1 1015 protons per pulse. Due to space charge limits, several rings or one ring re-filled several times during the neutrino cycle are necessary. A cost effective design of an accumulator that can handle this large number of ions will be shown, taking into account the structure of the linac pulse and the requirements of the target system. Beam dynamics issues, the injection system, the extraction and the distribution on the targets are addressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI110 The HNOSS Horizontal Cryostat and the Helium Liquefaction Plant at FREIA 2759
 
  • R. Santiago Kern, T.J.C. Ekelöf, K.J. Gajewski, L. Hermansson, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • P. Bujard, N.R. Chevalier, T. Junquera, J.P. Thermeau
    Accelerators and Cryogenic Systems, Orsay, France
 
  A horizontal cryostat to test superconducting cavities and magnets at liquid helium temperatures is installed at FREIA (Facility for REsearch Instrumentation and Accelerator development) at Uppsala University, Sweden. The cryostat allows full testing of superconducting spoke and elliptical accelerating cavities without the need of a specialized cryomodule per cavity. Because horizontal cryostats are custom-built, their number in the accelerator world is very limited. The FREIA horizontal cryostat is one of a kind as it has been designed to be versatile: it is able to house either two ESS double-spoke, or two ESS/TESLA type elliptical cavities, or superconducting magnets or a combination of these with all the ancillary equipment (power couplers, tuners, etc) and test them at the same time, reducing installation time but requiring extra design effort and cryogens supply. In order to achieve this, a helium liquefier with a capacity of 140 l/h delivers liquid helium to the horizontal cryostat while the return gases are directed towards a recovery system, connected in closed loop with the liquefier.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO025 Conceptual Design of a X-FEL Facility using CLIC X-band Accelerating Structure 2914
 
  • A.A. Aksoy, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • D. Angal-Kalinin, J.A. Clarke
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.J. Boland
    SLSA, Clayton, Australia
  • G. D'Auria, S. Di Mitri, C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Doğan
    Dogus University, Istanbul, Turkey
  • T.J.C. Ekelöf, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • W. Fang, Q. Gu
    SINAP, Shanghai, People's Republic of China
  • A. Latina, D. Schulte, S. Stapnes, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • Z. Nergiz
    Nigde University, Nigde University Science & Art Faculty, Nigde, Turkey
 
  Within last decade a linear accelerating structure with an average loaded gradient of 100 MV/m at 12 GHz has been demonstrated in the CLIC study. Recently, it has been proposed to use the CLIC structure to drive an FEL linac. In contrast to CLIC the linac would be powered by klystrons not by a drive beam. The main advantage of this proposal is achieving the required energies in a very short distance, thus the facility would be rather compact. In this study, we present the conceptual design parameters of a facility which could generate laser photon pulses covering the range of 1-75 Angstrom. Shorter wavelengths could also be reached with slightly increasing the energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO077 The New FREIA Laboratory for Accelerator Development 3059
 
  • R.J.M.Y. Ruber, A.K. Bhattacharyya, T.J.C. Ekelöf, K. Fransson, K.J. Gajewski, V.A. Goryashko, L. Hermansson, M. Jacewicz, T. Lofnes, M. Olvegård, R. Santiago Kern, R. Wedberg, R.A. Yogi, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • D.S. Dancila, A. Rydberg
    Uppsala University, Department of Engineering Sciences, Uppsala, Sweden
 
  The FREIA laboratory is a Facility for REsearch Instrumentation and Accelerator Development at Uppsala University, Sweden constructed recently to develop and test accelerator components. Initially it will develop the RF system for the spoke cavities of the ESS linac and test prototype spoke cavities at nominal RF power. For this purpose we installed a helium liquefaction plant, a versatile horizontal test cryostat and two 352 MHz RF power stations, one based on two tetrodes and the other on solid state technology. Beyond these developments FREIA will house a neutron generator and plans for a THz FEL are under discussion. FREIA is embedded in the Ångström physics, chemistry and engineering campus at Uppsala in close proximity to mechanical workshops, clean room with electron microscopes, tandem accelerator and the biomedical center.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)