Author: Di Mitri, S.
Paper Title Page
MOPRO077 Betatron Coupling Numerical Study at Elettra 264
 
  • S. Di Mitri, E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Elettra lacks skew quadrupoles and the coupling is controlled via the vertical orbit. Elettra has typical operational coupling of 1%, values as low as 0.3% were reached but however not easily established and reproducible. In order to control the coupling in a reproducible manner skew quadrupoles must be installed. Simulations of the betatron coupling and correction for the Elettra synchrotron light source were performed and are here presented. The numerical study is based on measured machine misalignments and carried out with the ELEGANT particle tracking code. The inclusion of families of skew quadrupoles in the existing lattice is investigated and shown to be conclusive for the coupling correction at the level of 0.1%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO056 Merit Functions for the Linac Optics Design for Colliders and Light Sources 1159
 
  • S. Di Mitri, M. Cornacchia
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • H.-S. Kang
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Optics matching and transverse emittance preservation are key goals for a successful operation of modern high brightness electron linacs. The capability of controlling them in a real machine critically relies on a properly designed magnetic lattice. Conscious of this fact, we introduce an ensemble of optical functions* that permit to solve the often neglected conflict between strong focusing, typically implemented to counteract coherent synchrotron radiation and transverse wakefield instability, and distortion of the transverse phase space induced by chromatic aberrations and focusing errors. A numerical evaluation of the merit functions is applied to existing and planned linac-based free electron lasers.
*S. Di Mitri and M. Cornacchia, Nucl. Instr. Meth. Phys. Research A 735, 60–65 (2014).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO013 FERMI Status Report 2885
 
  • M. Svandrlik, E. Allaria, F. Bencivenga, C. Callegari, F. Capotondi, D. Castronovo, P. Cinquegrana, M. Coreno, R. Cucini, I. Cudin, G. D'Auria, M.B. Danailov, R. De Monte, G. De Ninno, P. Delgiusto, A.A. Demidovich, S. Di Mitri, B. Diviacco, A. Fabris, R. Fabris, W.M. Fawley, M. Ferianis, E. Ferrari, P. Finetti, L. Fröhlich, P. Furlan Radivo, G. Gaio, D. Gauthier, F. Gelmetti, L. Giannessi, M. Kiskinova, S. Krecic, M. Lonza, N. Mahne, C. Masciovecchio, M. Milloch, F. Parmigiani, G. Penco, L. Pivetta, O. Plekan, M. Predonzani, E. Principi, L. Raimondi, P. Rebernik Ribič, F. Rossi, L. Rumiz, C. Scafuri, C. Serpico, P. Sigalotti, C. Spezzani, C. Svetina, M. Trovò, A. Vascotto, M. Veronese, R. Visintini, D. Zangrando, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  FERMI, the seeded Free Electron Laser (FEL) located at the Elettra laboratory in Trieste, Italy, consists of two FEL lines. The FEL-1 facility, covering the wavelength range between 20 and 100 nm, was officially opened to external users. The shorter wavelength range, between 20 and 4 nm, is covered by the FEL-2 line, a double stage cascade operating in the “fresh bunch injection” mode, which is still under commissioning. We will report on the different FEL-1 operation modes that can be offered for users and assess the performance of the facility. The progress in the commissioning of FEL-2 will then be addressed, in particular reporting the performance attained at the lower wavelength limit; this aspect is of great interest for the user’s community of the FERMI seeded FEL since it allows to carry out experiments below the carbon K-edge.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO018 Electron-Magnetic-Phase Mixing in a Linac-driven FEL to Suppress Microbunching in the Optical Regime and Below 2894
 
  • S. Di Mitri, S. Spampinati
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • H.-S. Kang
    PAL, Pohang, Kyungbuk, Republic of Korea
  • S. Spampinati
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Control of microbunching instability is a fundamental requirement in modern high brightness electron linacs, in order to prevent malfunction of beam optical diagnostics and contamination in the generation of coherent radiation, such as free electron lasers. We present experimental control and suppression of microbunching instability-induced optical transition radiation by means of particles’ longitudinal phase mixing in a magnetic chicane*. In presence of phase mixing, the intensity of the beam-emitted coherent optical transition radiation is reduced by one order of magnitude and brought to the same level provided, alternatively, by beam heating. The experimental results are in agreement with particle tracking and analytical evaluations of the instability gain. A discussion of applications of magnetic phase mixing to the generation of quasi-cold high-brightness ultra-relativistic electron beams is finally given.
* S. Di Mitri and S. Spampinati, Phys. Rev. Lett. 112, 134802 (2014)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO025 Conceptual Design of a X-FEL Facility using CLIC X-band Accelerating Structure 2914
 
  • A.A. Aksoy, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • D. Angal-Kalinin, J.A. Clarke
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.J. Boland
    SLSA, Clayton, Australia
  • G. D'Auria, S. Di Mitri, C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Doğan
    Dogus University, Istanbul, Turkey
  • T.J.C. Ekelöf, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • W. Fang, Q. Gu
    SINAP, Shanghai, People's Republic of China
  • A. Latina, D. Schulte, S. Stapnes, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • Z. Nergiz
    Nigde University, Nigde University Science & Art Faculty, Nigde, Turkey
 
  Within last decade a linear accelerating structure with an average loaded gradient of 100 MV/m at 12 GHz has been demonstrated in the CLIC study. Recently, it has been proposed to use the CLIC structure to drive an FEL linac. In contrast to CLIC the linac would be powered by klystrons not by a drive beam. The main advantage of this proposal is achieving the required energies in a very short distance, thus the facility would be rather compact. In this study, we present the conceptual design parameters of a facility which could generate laser photon pulses covering the range of 1-75 Angstrom. Shorter wavelengths could also be reached with slightly increasing the energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)