Author: Decking, W.
Paper Title Page
TUPRO046 Beamlines with Two Deflecting Cavities for Transverse-to-Longitudinal Phase Space Exchange 1129
 
  • V. Balandin, W. Decking, N. Golubeva
    DESY, Hamburg, Germany
 
  Optical systems for transverse-to-longitudinal emittance exchange involving single dipole-mode cavity were in great details studied during the last decade theoretically and experimentally. In this paper we discuss the question, if there are any advantages in usage of beamlines utilizing two deflecting cavities instead of one. The general analysis is presented and specific beamline designs are given as examples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO047 Betatron Oscillations in Planar Dipole Field 1132
 
  • V. Balandin, W. Decking, N. Golubeva
    DESY, Hamburg, Germany
 
  In this paper, in preparation to the European XFEL commissioning, we consider the procedure of calculation of focusing properties of chicane-type bunch compressors and planar undulators using 2D magnetic field model (approximation of infinitely wide poles).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO049 Layout and Optics of the Dump Line at the European XFEL 1138
 
  • N. Golubeva, V. Balandin, W. Decking
    DESY, Hamburg, Germany
 
  The purpose of the optical system, which we call the dump line, is not simply the transport of the beam to the beam dump. It is an essential part of the beam switchyard which provides the possibility to distribute electron bunches of one beam pulse to different FEL beam lines, allowing a flexible selection of the bunch pattern at each FEL experiment. In this paper we describe the final layout of this optical system as it is now under construction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI040 New BBA Algorithm for Electron Beam Orbit Steering in Linear Accelerators 1650
 
  • A. Sargsyan, V. Sahakyan, G.S. Zanyan
    CANDLE SRI, Yerevan, Armenia
  • W. Decking
    DESY, Hamburg, Germany
 
  In linear accelerators or transfer lines beam-based alignment (BBA) techniques are important tools for beam orbit steering. In this paper BBA correction algorithm based on difference orbit multiple measurements is proposed. Numerical simulation results for European XFEL SASE1 and FLASH undulator section are presented, according to which the orbit alignment can be achieved within accuracy of about 2 microns and 5 microns respectively. The influence of quadrupole gradient errors is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO007 Beam-based Alignment in the European XFEL SASE1 2867
 
  • H. Jin, W. Decking, T. Limberg
    DESY, Hamburg, Germany
 
  The European X-ray Free Electron Laser (E-XFEL) provides an ultra-short and high-brilliant photon pulses of spatially coherent X-rays with wavelengths down to 0.05 nm by using three undulator systems. Within these undulator systems, the orbit trajectory is required to be straight to a few micron over each gain length, so that the photon beam is capable of overlapping efficiently with the electron beam. However, this requirement is not obtainable with ordinary mechanical alignment methods. For this reason, a beam-based alignment (BBA) method using BPM readings of different beam energies is applied to the E-XFEL SASE1 undulators. In this report, we describe the BBA simulation for SASE1 including alignment errors of quadrupoles and BPMs. After correction, the desired range of the orbit trajectory is attained with high confidence. In addition, to identify the reliability of an aligned orbit trajectory acquired from the BBA simulation, we present here the SASE FEL radiation simulation, in which we observe a slight decrease of radiation energy and power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)