Author: Xiong, Y.Q.
Paper Title Page
TUPEA044 The Design of Control System for the Optical Cavity Adjuster of a FEL-THz Source 1232
 
  • X. Liu, Q. Fu, B. Qin, P. Tan, C. Wang, Y.Q. Xiong, J. Yang, H. Zeng
    HUST, Wuhan, People's Republic of China
 
  The optical cavity adjuster is an important sub-system in a FEL-THz source, which is used to adjust the position and angle of the optical cavity with a high precision. In view of the requirements of the optical cavity adjuster of the FEL-THz source, this paper presents the design of the control system of the optical cavity adjuster. The design of the control system based on a PC and a motion controller is adopted. The motion controller controls high-precision linear stage to adjust linear direction and picomotors are controlled to enable the adjustment of roll and yaw. According to relevant calculation, the range of linear direction and the accuracy can be reached at ±3mm and 0.2~0.5μm; the range of the adjustment of roll and yaw and the accuracy can be reached at ±2° and 20″. In summing up it can be stated that the design meets the requirements and it also lays the foundation for engineering on developing the optical cavity adjuster.  
 
TUPWO035 Physical Design of Beam Transport Line of a Compact Terahertz FEL 1952
 
  • H. Zeng, Q.S. Chen, Q. Fu, B. Qin, B. Wu, Y.Q. Xiong
    HUST, Wuhan, People's Republic of China
  • G. Feng, Y.J. Pei
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The single pass, linac-based compact terahertz source at HUST is now in the physical design stage. To match Twiss parameters and dispersion function of the electron beam at the undulator entrance and get smaller beta function in the whole line, several lattices based on the double bending achromat(DBA) structure were discussed and the optimized design is given with beam dynamics results–calculated by MAD and Trace 3D.  
 
WEIB205 Promoting Local Economic Development by an Integration of Industry, Teaching and Research of Compact Low Energy Accelerators 2119
 
  • M. Fan, D.Z. Chen, J. Huang, D. Li, K.F. Liu, B. Qin, Y.Q. Xiong, J. Yang, T. Yu
    HUST, Wuhan, People's Republic of China
  • H.Q. Gao
    Hubei University of Science and Technology, Hubei, People's Republic of China
 
  Huazhong University of Science and Technology has been carrying out R&D of compact low energy accelerators by integrating industry, teaching and research to promote local economic development supported by both national and provincial government and local enterprises. Currently, the projects include: compact medical cyclotron, electron irradiation accelerators, etc. The industry of non-power nuclear energy based on low energy particle accelerator has also drawn attention from the provincial government of Hubei and municipal government of Xianning. Meanwhile, a series of lectures about nuclear science and nuclear safety were hosted to help the public better understand nuclear technology and to wipe out fears of nuclear energy. At the moment, the application of non-power nuclear energy with based on compact low energy accelerator is developing into an industry chain in the area of central China.  
slides icon Slides WEIB205 [2.311 MB]  
 
WEPWA023 Design of 14 MeV LINAC for THz Source Based FEL 2181
 
  • Y.J. Pei, G. Feng, Y. Hong, G. Huang, D. Jia, K. Jin, C. Li, J. Li, S. Lu, L. Shang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Q.S. Chen, M. Fan, T. Hu, Y.Q. Xiong, H. Zeng
    HUST, Wuhan, People's Republic of China
  • B. Qing, Z.X. Tang, X.L. Wei
    USTC, Hefei, Anhui, People's Republic of China
  • L.G. Shen, F. Zhang
    USTC/PMPI, Hefei, Anhui, People's Republic of China
 
  Abstract THz wave have many special performances, such as it can penetrate deep into many organic materials without the damage associated with ionizing radiation such as X-ray, it can be used to distinguish between materials with varying water content, because THz radiation is absorbed by water. In part researchers lacked reliable sources of THz, so develop new THz sources is important now. So far there were many kind of THz Source, one of them is THz source based a FEL that can produce high power (~kW). This paper will describe the design of a LINAC of 14MeV which is used for FEL to produce THz radiation. The LINAC is mainly composed of a novel EC-ITC RF gun, compensation coil, constant gradient accelerating structure, beam diagnostic system and so on. Main design parameters are as following: Energy 7~15MeV Beam current (macro pulse) 571mA (micro pulse) 30~40° Bunch length 5~7ps Charge per bunch 200~300pC Normalized emittance ≤10mm.mrad Energy spread(rms) ≤0.5%  
 
WEPWA037 Effect of Ground Vibration on the Out-coupled Power in a Terahertz FEL Oscillator 2211
 
  • Q. Fu, L.Z. Deng, B. Qin, P. Tan, Y.Q. Xiong, Y.B. Yibin, H. Zeng
    HUST, Wuhan, People's Republic of China
 
  To acquire high power out-coupled, we must ensure the co-axis of electron orbit, optical beam and magnetic field. The propagation of ground vibration through the optical platform will lead to misalignment of the optical axis in the FEL optical cavity. Based on measurement results of the ground vibration, simulations of misalignment are studied with GENESIS+OPC. The tolerance of mirror tilt and offset is also discussed.  
 
WEPWA038 Influence of Magnet Errors and Waveguide Permeability on Magnetic Field Performance in Pure Permanent Undulators 2214
 
  • X. Liu, K.F. Liu, B. Qin, P. Tan, B. Wu, Y.Q. Xiong, J. Yang, L. Yang
    HUST, Wuhan, People's Republic of China
 
  Abstract For pure permanent magnet (PM) undulator, unavoidable divergences of remanence field and magnetization vector in PM blocks and installation error will cause magnetic field error at the central line of the undulator. This paper presents the simulation results of the magnetic field in non-ideal undulator containing these errors, with specified tolerances in Normal distribution. As well as the peak field error, increases of the harmonic components and impact on field integrals are calculated. The influence on magnetic field caused by waveguide permeability is also discussed.