Author: Vogt, M.
Paper Title Page
TUPEA004 The Free-electron Laser FLASH at DESY 1167
 
  • M. Vogt, B. Faatz, J. Feldhaus, K. Honkavaara, S. Schreiber, R. Treusch
    DESY, Hamburg, Germany
 
  The free-electron laser FLASH at DESY routinely produces up to several thousand photon pulses per second with wavelengths ranging from 44 nm down to as low as 4.25 nm and with pulse energies of up to 400μJoule. After a significant technical upgrade in 2010, which included an energy upgrade to 1.25 GeV and linearization of the longitudinal phase space by 3-rd harmonic cavities, emphasis was put on consolidation and automatization of operational procedures and better control of the electron/photon beam properties. Some highlights are: on-line measurements of the electron bunch-length in the regime of several 10 fs to 100 fs, reaching into the water window, increased photon pulse energies and the improved machine reproducibility. Moreover, first evidence of HHG seeding was found at the sFLASH experiment in spring 2012. Construction work is ongoing for a 2-nd beam-line (FLASH-2) for which commissioning will start in late 2013.  
 
TUPME004 Spin Tracking at the International Linear Collider 1565
 
  • V.S. Kovalenko, G.A. Moortgat-Pick, A. Ushakov
    University of Hamburg, Hamburg, Germany
  • S. Riemann
    DESY Zeuthen, Zeuthen, Germany
  • M. Vogt
    DESY, Hamburg, Germany
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work is supported by the German Federal Ministry of Education and Research, Joint Research Project R&D Accelerator "Spin Optimization", contract number 19XL7Ic4
In the baseline design for the International Linear collider an helical undulator-based positron source has been chosen that can provide positrons with a polarization of 60% as an upgrade option motivated by physics reasons. But even the baseline configuration would already provide about 30%. In order to match the high precision requirements from physics and to optimize the physics outcome one has to control systematic uncertainties to a very high level. Therefore it is needed to run both beams polarized but provide also an unpolarized set-up for control reasons. In our study we present results on precise spin tracking and propose also an minimal machine set-up to run in an unpolarized mode within the baseline design.
 
 
TUPWO030 Beam-based Alignment Simulation on Flash-I Undulator 1940
 
  • D. Gu, Q. Gu, D. Huang, M. Zhang, M.H. Zhao
    SINAP, Shanghai, People's Republic of China
  • M. Vogt, N.J. Walker
    DESY, Hamburg, Germany
 
  In order to ensure the SASE process can take place in the whole FLASH-I undulator section, a straight beam trajectory is mandatory which can only be achieved through beam-based alignment (BBA) method based on electron energy variations. In this paper, a detailed result of simulation is presented which demonstrate that the alignment can be achieved within accuracy of a few 10 μm after several iterations. The influence of Quadrupole and BPM offsets, magnet-mover calibration errors, quadrupole gradient errors are also discussed.