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Abstract

In the baseline design for the International Linear Col-

lider an helical undulator-based positron source has been

chosen that can provide positrons with a polarization of

30%. As an upgrade option motivated by physics reasons

positron polarization can be increased up to 60%. In order

to match the high precision requirements from physics and

to optimize the physics outcome one has to control system-

atic uncertainties to a very high level. Therefore it is needed

to run both beams polarized but provide also an unpolarized

set-up for control reasons. In our study we present results

on spin tracking for an unpolarized mode.

INTRODUCTION

A substantial enhancement of the effective luminos-

ity Leff = (1 − Pe+Pe−)L is possible with polarized

beams [1, 2]. However, the exploitation of the increase by

the factor (1 − Pe+Pe−) is only possible in case of an ef-

ficient pairing of initial states (+−), (−+); this requires

the same frequency of helicity reversal for the electron and

the positron beam. An important task in experiments with

polarized beams is to identify and reduce any systematic

errors arising from the accelerator itself. The technique of

“spin flipping” can be applied for this purpose. The po-

larization of the electron beam can be flipped easily by re-

versing the polarity of the laser beam which hits the pho-

tocathode. A fast and random flipping between the beam

polarization orientations reduces systematic uncertainties

substantially. The orientation of the positron beam polar-

ization could be controlled using spin rotators, specifically

by inserting two parallel sections for spin rotation with op-

posite polarities, i.e. setting the spin parallel or antiparallel

to the field in the damping ring main dipoles. This design

gives the possibility of randomly switching between two

helicities for the positrons [3, 4]. Resonant depolarisation

within the damping rings offers an alternative method. To

exclude systematic errors one could depolarize some of the

bunches, and compare the data from polarized and unpolar-

ized bunches under identical machine conditions [5]. Re-

cent simulation results of the resonant depolarization tech-

nique applied for the ILC are presented in this paper.
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RESONANT DEPOLARIZATION
In an ideal, flat, circular storage ring without solenoids or

spin rotators, the spin of each positron precesses around the

vertical magnetic fields of the bending dipoles at the spin

precession frequency fs. The spin precession frequency is

related to the orbital circulation frequency fc by

fs = fcνs, (1)

where νs is the spin tune (i.e. the number of spin pre-

cessions during each turn around the ring). The spin tune

is proportional to the beam energy via νs = Gγ, where

G=0.00115965219 is the anomalous magnetic moment of

the positron, and γ is the Lorentz factor.

A horizontal-field rf dipole can spin-flip a vertically po-

larized beam. A resonance occurs when the frequency of

the rf magnetic field is synchronized with the spin tune and

the circulation frequency according to:

fr = fc(n± νs), (2)

where n is an integer. Although the change in spin orien-

tation on an individual pass through an rf dipole is small,

when the rf dipole frequency is close to the resonant fre-

quency, the kicks add up coherently, and the cumulative

effect of the kicks is to tilt the spins strongly away from the

vertical. If the frequency of the rf dipole is varied across

the resonance at a rate that is neither too slow nor too fast,

the adiabatic invariant[9, 10] which describes the equilib-

rium polarization state of the beam deteriorates. Resonant

depolarization occurs when the final polarization is zero.

If there are only vertical magnetic fields, then the vertical

beam polarization remains unchanged; however, whenever

the spins on orbital trajectories observe periodic or quasi–

periodic horizontal magnetic fields which are in resonance

with the spin tune, depolarizing resonance occurs, which

can destroy the polarization.

RF DIPOLE PARAMETERS
The resonance strength for one rf dipole is given by [6]:

ε =
1 +Gγ

∫
B⊥ · dL

4πBρ
(3)

where Bρ = P/q is the beam rigidity, i.e. momentum

per charge. By varying the RF dipole frequency from suf-

ficiently far below to sufficiently far above the resonance

frequency fr, one can cross the depolarizing resonance in

a way such that the final beam polarization, Pf , is related
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to the initial beam polarization, Pi by the Froissart-Stora

formula [7]:

Pf

Pi
= 2 exp

(−π|ε|2
2α

)
− 1, (4)

where α is the rate of resonance crossing (crossing speed),

which is defined as follows. At the end of each orbital

turn, particles pass through an rf dipole with transverse

horizontal magnetic field, and the spin vector then pre-

cesses around the horizontal axis by an angle of (1 +
Gγ)BmL/Bρ. Here, BmL = B⊥L cos(ϕdip) is the field

of the rf dipole on the mth turn. At each revolution period,

the dipole phase increases by Δϕdip = 2πνdip. The tune

of the dipole oscillation is νdip = ν0 + m(ν1 − ν0)/N ,

where ν0 = νs − παN and ν1 = νs + παN . If νdip = νs
then the dipole is exactly on the spin resonance. To depo-

larize the beam, we scan the dipole frequency across the

spin resonance. The rate of resonance crossing is defined

by: α = (ν1 − ν0)/2πN .

Application of the Froissart-Stora formula assumes that

the depolarizing resonances are narrow and well-separated,

so that the beam crosses only one resonance. There are

three distinct regimes for the rate of resonance crossing

shown in Table 1.

Table 1: Three Distinct Regimes

Crossing rate Polarization Effect

Fast Pf ≈ Pi No depolarization

Medium Pi > Pf > −Pi Depolarization

Slow Pf ≈ −Pi Spin-flip

NUMERICAL SIMULATIONS
Spin tracking simulations of the resonance depolariza-

tion technique were performed with two different ap-

proaches, using the computer codes SAMM [8] and

SPRINT [9, 10]. SAMM carries out element-by-element

tracking through a specified lattice, with the spin dynamics

described by the Thomas-BMT equation:

d	S

dt
= 	Ω× 	S, (5)

where frequency of spin precession is

	Ω = − e

γm

[
Gγ 	B⊥ + (1 +G) 	B‖

]
. (6)

SAMM calculates the instantaneous polarization as the av-

erage of the spin vector over M particles in a bunch at a

single point in the ring as follows:

	Pinst|j = 1

M

M∑
i=1

	Si|j , (7)

where j is the revolution turn.

Spin tracking in SPRINT is based on the transport of

a unit quaternion with the spin-orbit coupling included by

a renormalized first-order expansion in the orbital coordi-

nates. This results in a very fast tracking time. SPRINT

calculates multi-turn polarization as an average of instanta-

neous polarization at each revolution turn j:

	Pmult =
1

N

N∑
i=1

	Pinst|i, (8)

where N is the specified number of turns for averaging.

In the lattice for the ILC damping ring, two rf dipoles

were inserted in a straight section (i.e. without other dipole

magnets). The distance between the magnets was chosen

so that the orbital phase advance is π: as a result, the two

rf dipoles form a closed orbit bump when their strengths

are in a fixed ratio (determined by the beta functions at the

dipoles).

The beam is stored in the damping rings for Tstore =
100ms, which is the time between machine pulses. The to-

tal number of turns N that each particle makes in the ring is

then given by the store time and the circulation frequency:

N = Tstorefc = 9256.

Figure 1: Positron polarization as a function of turn num-

ber in the ILC damping ring, calculated using SAMM and

SPRINT.

Figure 1 shows a resonance crossing simulated with

SPRINT (blue) and with SAMM (red). It should be noted

that the parameters for Figure 1 are not optimized for com-

plete beam depolarization but are presented here to com-

pare the two different approaches. It can be seen that in-

stantaneous polarization (red curve) is fluctuating wildly

even a long way from resonance, since the tracked ensem-

ble did not start at equilibrium. Taking this into account,

the results from the two codes are in reasonable agreement.

Figure 2 shows the ratio of final to initial polarization

in the ILC damping rings as a function of the resonance

strength ε. The red circles show values computed with

SPRINT, using the actual lattice with two rf dipoles. The

green line shows a fit of the analytical Froissart-Stora for-

mula to the tracking data (red circles) using the resonance

TUPME004 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

1566C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

01 Circular and Linear Colliders

A03 Linear Colliders



strength as a fit parameter. Finally, the blue line shows

the final polarisation expected from the Froissart-Stora for-

mula, for a resonance strength calculated with the assump-

tion that only a single RF dipole is presented. The differ-

ence in resonance strength of Δε/ε = 0.2 · 10−4/2.5 ·
10−4 = 8% can be explained by the fact that resonance

strength in the Froissart-Stora formula calculated using (3)

ignores the spin phase advance between the two rf dipoles

and the forced orbital oscillations. These effects are in-

cluded in the simulation of the real lattice with SPRINT.

Figure 2: SPRINT tracking data and Froissart-Stora fit

compared to F.-S. formula with ε from Eq. 3.

The impact of synchro-betatron motion on the evolution

of the multiturn polarization is shown in Figure 3. The nor-

malized emittances of the positron beam are εn,x = εn,y =
0.01m·rad transversely, and εn,z = 0.05m·rad longitudi-

nally. The red curve corresponds to motion on an invariant

torus with amplitude equal to one σ (where σ is the rms

beam size), the green curve corresponds to motion with

amplitude equal to 2σ, and the blue curve corresponds to

motion with amplitude equal to 3σ respectively. It can be

observed that the turn (i.e. the dipole tune νdip) at which

the resonance is crossed varies with the orbital amplitudes

of the tracked particles. This indicates the presence of an

amplitude-dependent spin tune shift. Varying the ampli-

tude causes the resonance to move. A continuous range of

amplitudes will result in a continuous range of spin tunes.

The various degrees of depolarization achieved depending

on the amplitude of the synchro-betatron motion indicates

partly destructive interference with spin-orbit resonances,

rather than the RF dipole resonance. This has to be stud-

ied in greater detail in the future. Moreover, this makes

clear that radiation damping and synchrotron radiation ef-

fects (which directly affect the beam size) have to be taken

into account to find the optimal conditions for beam depo-

larization.

Figure 3: Effect of amplitude of synchro-betatron motion

on resonant depolarization. Particles are launched on an in-

variant torus with amplitude corresponding to one σ of the

beam with the nominal emittance (red line); with amplitude

2σ of the nominal beam, i.e. one σ of a beam with four

times the nominal emittance (green line); and with ampli-

tude 3σ of the nominal beam, i.e. one σ of a beam with nine

times the nominal emittance (blue line). The differences

between the three cases indicate amplitude-dependent spin

tune shifts.

CONCLUSIONS
Our first results indicate that it is feasible to obtain an

operation mode with unpolarized beams in the ILC, using

resonant depolarization. Different methods used for simu-

lations show a reasonable level of agreement. The resonant

depolarization conditions identified in the simulations are

not final because the effects of synchrotron radiation and

radiation damping have not so far been included. Beam dy-

namics effects as well as spin tracking must be investigated

for both polarized and unpolarized modes.
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