Author: Sermeus, L.
Paper Title Page
MOPFI052 A New Lead Ion Injection System for the CERN SPS with 50 ns Rise Time 398
 
  • B. Goddard, O. Aberle, J. Borburgh, E. Carlier, K. Cornelis, L. Ducimetière, L.K. Jensen, T. Kramer, D. Manglunki, A. Mereghetti, V. Mertens, D. Nisbet, B. Salvant, L. Sermeus
    CERN, Geneva, Switzerland
 
  The LHC High Luminosity upgrade project includes a performance upgrade for heavy ions. One of the present performance limitations is the rise time of the SPS injection kicker system, which imposes a spacing of at least 220 ns between injected bunch trains at the operational rigidity. A reduction of this rise time to 50 ns for lead ions is requested as part of the suite of measures needed to increase the present design performance by a factor three. A new injection system based on a fast pulsed septum and a fast kicker has been proposed to fulfil this rise time requirement, and to meet all the constraints associated with the existing high intensity proton injection in the same region. This paper describes the concept and the required equipment parameters, and explores the implications of such a system for SPS operation.  
 
MOPFI054 Upgrades for the CERN PSB-TO-PS Transfer at 2 GeV 404
 
  • W. Bartmann, J. Borburgh, J.R.T. Cole, S.S. Gilardoni, B. Goddard, O. Hans, M. Hourican, L. Sermeus, R. Steerenberg
    CERN, Geneva, Switzerland
  • C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  The CERN PS Booster extraction energy will be upgraded from 1.4 to 2.0 GeV to alleviate the direct space charge tune shift in the PS. The focussing structure of the transfer line will be modified in order to better match the optics between the PSB and the PS. The optics of the PS at injection and, with it, of the transfer line can be adapted to reduce the continuous losses from the already injected and circulating beam bumped towards the septum. Experimental results of the optics optimisation and probing the injection kicker gap will be shown.  
 
MOPFI061 Concept for Elena Extraction and Beam Transfer Elements 422
 
  • J. Borburgh, B. Balhan, W. Bartmann, T. Fowler, L. Sermeus, G. Vanbavinckhove
    CERN, Geneva, Switzerland
  • R.A. Baartman
    TRIUMF, Vancouver, Canada
  • D. Barna
    University of Tokyo, Tokyo, Japan
  • V. Pricop
    Transilvania University of Brasov, Brasov, Romania
 
  In 2011 the ELENA decelerator was approved as a CERN project. Initially one extraction was foreseen, which should use a kicker and a magnetic septum which can be recuperated from an earlier installation. Since then a second extraction has been approved and a new solution was studied using only electric fields to extract the beam. This will be achieved by fast pulsing a separator, allowing single-bunch but also a full single-turn extraction from ELENA towards the experiments. The extraction and transfer requirements of ELENA are described, followed by the principal differences between the magnetic and electric field concepts. The design of electrostatic focussing and bending devices for the transfer lines will be presented. Finally the field quality which can be achieved with the separator and the concept of its power supply will be discussed.