Author: Schempp, A.
Paper Title Page
THPWO069 Development of the NICA Injection Facility 3915
 
  • A.V. Butenko, E.D. Donets, E.E. Donets, V.V. Fimushkin, A. Govorov, A.D. Kovalenko, K.A. Levterov, I.N. Meshkov, V. Monchinsky, A.Yu. Ramsdorf, A.O. Sidorin, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • H. Hoeltermann, H. Podlech, U. Ratzinger, A. Schempp
    BEVATECH OHG, Offenbach/Main, Germany
  • A. Kolomiets, G. Kropachev, T. Kulevoy
    ITEP, Moscow, Russia
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is assumed to operate using two injectors: the Alvarez-type linac LU-20 as injector for light ions, polarized protons and deuterons and a new linac HILac for heavy ions. The main features of ion sources and both linacs are presented. Upgrade for pre-accelerator of LU-20 is described.  
 
WEPFI009 RF Measurement during CW Operation of an RFQ Prototype 2720
 
  • M. Vossberg, H.C. Lenz, H. Podlech, A. Schempp
    IAP, Frankfurt am Main, Germany
  • A. Bechtold
    NTG Neue Technologien GmbH & Co KG, Gelnhausen, Germany
 
  A 17 MeV MHz proton linac is being developed as a front end of the driver accelerator for the MYRRHA facility in Mol. As a part of the MAX (MYRRHA Accelerator Experiment and Development) project a 4-rod Test-RFQ with a resonance frequency of 176 MHz has been designed and built for the MAX-Project. The RFQ has been modified to solve the cooling problem at cw-operation, the geometrical precision had to be improved as well as the rf-contacts. The developments led to a new layout and a sophisticated production procedure of the stems and the electrodes. Calculations show an improved Rp-value leading to power losses less than 30 kW/m, which is about 60 % of the power losses which could be achieved safely at cw-operation of the similar Saraf-RFQ. Thermal measurements and simulations with the single components has been completed. During cw-operation the temperature distribution will be measured and the rf-performance checked.  
 
THPWO008 Status of the 70 MeV FAIR Proton Injector 3773
 
  • G. Clemente, W.A. Barth, R. Bereznov, P. Forck, L. Groening, R. Hollinger, M. Kaiser, A. Krämer, F. Maimone, C. Mühle, J. Pfister, G. Schreiber, J. Trüller, W. Vinzenz, C. Will
    GSI, Darmstadt, Germany
  • R. M. Brodhage, B. Koubek, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main, Germany
  • N. Chauvin, O. Delferrière
    CEA/IRFU, Gif-sur-Yvette, France
  • B. Launé, J. Lesrel
    IPN, Orsay, France
  • C.S. Simon, O. Tuske
    CEA/DSM/IRFU, France
 
  Funding: BMBF
The FAIR project requires a dedicated proton injector for the creation of high intensity secondary antiproton beams. This machine will be the first high intensity linear accelerator based on CH-DTL. The status of the project, with particular emphasis on the construction of the first RF prototype is presented.
 
 
THPWO009 Beam Dynamics Error and Loss Investigation of the FAIR Proton Injector 3776
 
  • G. Clemente, W.A. Barth, P. Forck, L. Groening, R. Hollinger, M. Kaiser, J. Pfister, W. Vinzenz, S.G. Yaramyshev, C. Zhang
    GSI, Darmstadt, Germany
  • R. M. Brodhage, B. Koubek, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main, Germany
  • N. Chauvin, C.S. Simon, O. Tuske
    CEA/DSM/IRFU, France
  • O. Delferrière
    CEA/IRFU, Gif-sur-Yvette, France
  • B. Launé, J. Lesrel
    IPN, Orsay, France
 
  The FAIR Proton Linac is a 70mA, 70 MeV. 325 MHz linear accelerator based on CH cavities. The focusing scheme is provided by an asynchronous KONUS lattice period. Random misalignment and rotation errors of the quadrupoles, together with phase and RF settings of the power source plays a major role in beam losses. Those effects are investigated and the beam dynamics results, including several source of errors, are presented and discussed.  
 
THPWO017 A Coupled RFQ-IH Cavity for the Neutron Source FRANZ 3797
 
  • M. Heilmann, C. Claessens, O. Meusel, D. Mäder, U. Ratzinger, A. Schempp, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The Frankfurt neutron Source at the Stern-Gerlach-Zentrum (FRANZ) delivers neutrons in the energy range from 1 to 300 keV at high intensities. The neutrons are produced using the the 7Li(p,n)7Be reaction with 2 MeV protons. The linac accelerator cavities consists of a 4-rod-RFQ coupled with an 8 gap interdigital H-type drift tube section with a total cavity length of 2.3 m. It accelerates the 120 keV beam to 2.03 MeV at a frequency of 175 MHz. The combined cavity will be powered by one RF amplifier to reduce investment and operation costs. The inductive power coupler will be located at the RFQ part. The coupling into the IH – section is provided by direct inductive coupling within the cavity. The coupled RFQ-IH combination is investigated with CST-MWS-simulations and by an RF model. The linac combination has to match the resonance frequency, flatness along the RFQ and the voltage ratio between both cavity sections. Beam operation will be cw (a few mA) and pulsed 250 kHz, 50 ns (up to 50 mA and beyond). The thermal cavity losses are about 200 kW and the cooling is the challenging topic.  
 
THPWO018 Power Tests of the 325 MHz 4-ROD RFQ Prototype 3800
 
  • B. Koubek, H. Podlech, A. Schempp, J.S. Schmidt
    IAP, Frankfurt am Main, Germany
 
  For the FAIR project of GSI as part of the proton linac a 325 MHz RFQ with an output energy of 3 MeV is planned. Simulations that have lead to a prototype of a 4-Rod Radio Frequency Quadrupole (RFQ) have been done. The RF parameters have been verified with the prototype. Power tests of this 6 stem copper RFQ should now verify parameters like shunt impedance, electrode voltage and give answers of how much power the structure can sustain.  
 
THPWO020 Simulations on the Boundary Fields of 4-rod RFQ Electrodes 3803
 
  • J.S. Schmidt, B. Koubek, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  If the RF design of a 4-rod Radio Frequency Quadrupole (RFQ) is not performed carefully with respect to the boundary fields of its electrodes, it can produce errors compared to beam dynamic simulations. An additional field component can be induced on the beam axis, which influences the properties of the particle beam, like energy per nucleon for example, dramatically. Therefore, the influences of different geometric parameters of 4-rod RFQs on these fields have been studied in detail. The results of these simulations will be presented in this paper.