Author: Ristori, L.
Paper Title Page
WEPWO053 SRF Development for a MW Proton Source at Fermi National Accelerator Laboratory 2423
 
  • T.T. Arkan, C.M. Ginsburg, A. Grassellino, S. Kazakov, T.N. Khabiboulline, T.H. Nicol, Y. Orlov, T.J. Peterson, L. Ristori, A. Romanenko, A.M. Rowe, N. Solyak, A.I. Sukhanov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Work supported by the US Department of Energy
Fermilab is planning a megawatt-level proton beam facility utilizing niobium superconducting RF (SRF) cavities. Project X at Fermilab will eventually provide high-intensity beams for research into the nature of matter at the "intensity frontier". Research and development in several areas will bring the SRF technology to the level needed for this application. Among developments in SRF being pursued with our national and international collaborators are 162.5 MHz half-wave resonators, 325 MHz single-spoke resonators, and two types of elliptical multi-cell 650 MHz cavities. Performance requirements for these cavities and cryomodules in continuous wave (CW) operation are extremely stringent in order to provide high accelerating gradients with acceptable total cryogenic load and overall accelerator capital and operating costs. This paper presents some highlights of the SRF R&D program and proton linac development work at Fermilab.
 
 
WEPWO054 Multistep Mechanical Analyses of Centrifugal Barrel Polishing Barrel and Cavity 2426
 
  • M. Chen, C.A. Cooper, L. Ristori
    Fermilab, Batavia, USA
 
  Funding: US Department of Energy
Fermilab has successfully demonstrated the ability to improve the performance of damaged 1.3 GHz single cell and 9-cell Tesla–type cavities by using a modified centrifugal barrel polishing (CBP) process that leaves a mirror finish on the inside of the cavity. Fermilab now is developing and constructing a new CBP machine which can handle both 650 MHz and 1.3 GHz cavities. The new machine will have a larger moment arm and therefore impart more force on the cavity and machine. Because of these increased forces the effects on cavity supports and machine design were examined. This paper will document the multistep mechanical analyses for the CBP barrel and cavity, calculations of the fatigue life and the requirements for the structural welds.
 
 
WEPWO055 Fabrication and Testing of SSR1 Resonators for PXIE 2429
 
  • L. Ristori, M.H. Awida, P. Berrutti, T.N. Khabiboulline, M. Merio, D. Passarelli, A.M. Rowe, D.A. Sergatskov, A.I. Sukhanov
    Fermilab, Batavia, USA
 
  Fermilab is in the process of constructing a proton linac to accelerate a 1 mA CW beam up to 30 MeV. It will be a test for the front end of Project X and known as the Project X Injector Experiment (PXIE). The major goal of PXIE is the validation of the Project X concept and mitigation of technical risks. It is expected to be constructed in the period of 2012-2016. The PXIE linac consists of a Ion source and LEBT, a 162.5 MHz RFQ, a MEBT, a 162.5 MHz HWR cryomodule (designed and built at ANL) and a 325 MHZ SSR1 cryomodule (designed and built at FNAL). In this paper we present the recent advances in the development of the SSR1 resonators at Fermilab. Several bare SSR1 resonators have been processed, heat-treated and tested successfully in the Fermilab Vertical Test Stand. The outfitting of helium vessels is in process and the coarse-fine frequency tuning system has been designed and is currently being procured and tested. Details of the power coupler are also discussed.  
 
WEPWO057 Update of SSR2 Cavities Design for Project X and RISP 2435
 
  • M. Merio, M.H. Awida, P. Berrutti, I.V. Gonin, T.N. Khabiboulline, D. Passarelli, Y.M. Pischalnikov, L. Ristori, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Single spoke resonators SSR2 (f=325 MHz) are under development at Fermilab. These cavities can meet requirements of Project X (FNAL) and RISP (Korea). The initial design of SSR2 cavities has been modified and optimized in order to satisfy the necessities of both projects. This paper will discuss the RF optimization for a single spoke resonator with a 50 mm beam pipe aperture and an optimal beta of 0.51. Further, the approach to the mechanical design of the cavity will be presented together with the proposed helium vessel. The latter is intended to guarantee a low He pressure sensitivity df/dp of the entire jacketed SSR2 and actively control the microphonics.
 
 
THPWO092 Update of Beam Optics and SRF Cavities for Project X 3975
 
  • T.N. Khabiboulline, P. Berrutti, V.A. Lebedev, A. Lunin, T.H. Nicol, J.-F. Ostiguy, T.J. Peterson, L. Ristori, A. Saini, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The Project X staging [1] requires reconsideration of the beam optics and thus, the SRF system for the 3 GeV CW linac of the Project X. The revised beam optics is presented in the paper as well as revised cavity design for SSR2 section and a new concept of the linac segmentation. The new versions for the Project X cryo-modules for the SSR2 section, low-beta 650 MHz section and high-beta 650 MHz section are discussed. The beam extraction scheme at 1 GeV is discussed also. [1] S. Holmes, “Project X News, Strategy, Meeting Goals,” 2012 Fall Project X Collaboration Meeting, 27-28 November 2012, Fermilab.