Author: Podlech, H.
Paper Title Page
THPWO069 Development of the NICA Injection Facility 3915
 
  • A.V. Butenko, E.D. Donets, E.E. Donets, V.V. Fimushkin, A. Govorov, A.D. Kovalenko, K.A. Levterov, I.N. Meshkov, V. Monchinsky, A.Yu. Ramsdorf, A.O. Sidorin, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • H. Hoeltermann, H. Podlech, U. Ratzinger, A. Schempp
    BEVATECH OHG, Offenbach/Main, Germany
  • A. Kolomiets, G. Kropachev, T. Kulevoy
    ITEP, Moscow, Russia
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is assumed to operate using two injectors: the Alvarez-type linac LU-20 as injector for light ions, polarized protons and deuterons and a new linac HILac for heavy ions. The main features of ion sources and both linacs are presented. Upgrade for pre-accelerator of LU-20 is described.  
 
WEPWO005 Microphonics Analysis of the SC 325 MHz CH-Cavity 2319
 
  • M. Amberg, M. Busch, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • M. Amberg, K. Aulenbacher
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
 
  Since the walls of superconducting (sc) cavities are kept very thin to support the cooling process, even small mechanical disturbances can detune the cavity. One of the main sources of detuning a cavity is microphonics. These low-frequent vibrations caused by vacuum pumps or underground noise are transferred to the cryostat and excite mechanical resonances of the cavity which may lead to frequency shifts larger than the bandwidth. To determine the mechanical resonance frequencies of the sc 325 MHz CH-cavity (Crossbar-H-Mode) simulations with ANSYS Workbench have been performed in a first step. Additionally, microphonics measurements were taken at room temperature as well as in a vertical cryostat at 4K in the cryo-lab of the IAP, Frankfurt University. Furthermore, the contraction of the cavity walls and the resulting frequency shift due to the cavity cool-down has been measured. A comparison between simulation results and the measured values is presented in this paper.  
 
WEPFI009 RF Measurement during CW Operation of an RFQ Prototype 2720
 
  • M. Vossberg, H.C. Lenz, H. Podlech, A. Schempp
    IAP, Frankfurt am Main, Germany
  • A. Bechtold
    NTG Neue Technologien GmbH & Co KG, Gelnhausen, Germany
 
  A 17 MeV MHz proton linac is being developed as a front end of the driver accelerator for the MYRRHA facility in Mol. As a part of the MAX (MYRRHA Accelerator Experiment and Development) project a 4-rod Test-RFQ with a resonance frequency of 176 MHz has been designed and built for the MAX-Project. The RFQ has been modified to solve the cooling problem at cw-operation, the geometrical precision had to be improved as well as the rf-contacts. The developments led to a new layout and a sophisticated production procedure of the stems and the electrodes. Calculations show an improved Rp-value leading to power losses less than 30 kW/m, which is about 60 % of the power losses which could be achieved safely at cw-operation of the similar Saraf-RFQ. Thermal measurements and simulations with the single components has been completed. During cw-operation the temperature distribution will be measured and the rf-performance checked.  
 
THPWO007 Advanced Superconducting CW Heavy Ion Linac R&D 3770
 
  • W.A. Barth, S. Mickat, A. Orzhekhovskaya
    GSI, Darmstadt, Germany
  • M. Amberg, K. Aulenbacher, V. Gettmann, S. Jacke
    HIM, Mainz, Germany
  • F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  An advanced upgrade program has to be realized in the next years, such that enhanced primary beam intensities are available. For this a new sc 28 GHz full performance ECR ion source has to be established. Via a new low energy beam line an already installed new RFQ and an IH-DTL will provide for cw-heavy ion beams with high average beam intensity. It is foreseen to build a new cw-heavy ion-linac behind this high charge state injector. In preparation an advanced R&D program is defined: The first linac section comprising a sc CH-cavity embedded by two sc solenoids (financed by HIM and partly by HGF-ARD-initiative) as a demonstrator will be tested in 2014). After successfull testing an advanced cryomodule comprising up to 4 rf cavities is foreseen. First layout scenarios of this advanced test bench will be presented.  
 
THPWO008 Status of the 70 MeV FAIR Proton Injector 3773
 
  • G. Clemente, W.A. Barth, R. Bereznov, P. Forck, L. Groening, R. Hollinger, M. Kaiser, A. Krämer, F. Maimone, C. Mühle, J. Pfister, G. Schreiber, J. Trüller, W. Vinzenz, C. Will
    GSI, Darmstadt, Germany
  • R. M. Brodhage, B. Koubek, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main, Germany
  • N. Chauvin, O. Delferrière
    CEA/IRFU, Gif-sur-Yvette, France
  • B. Launé, J. Lesrel
    IPN, Orsay, France
  • C.S. Simon, O. Tuske
    CEA/DSM/IRFU, France
 
  Funding: BMBF
The FAIR project requires a dedicated proton injector for the creation of high intensity secondary antiproton beams. This machine will be the first high intensity linear accelerator based on CH-DTL. The status of the project, with particular emphasis on the construction of the first RF prototype is presented.
 
 
THPWO009 Beam Dynamics Error and Loss Investigation of the FAIR Proton Injector 3776
 
  • G. Clemente, W.A. Barth, P. Forck, L. Groening, R. Hollinger, M. Kaiser, J. Pfister, W. Vinzenz, S.G. Yaramyshev, C. Zhang
    GSI, Darmstadt, Germany
  • R. M. Brodhage, B. Koubek, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main, Germany
  • N. Chauvin, C.S. Simon, O. Tuske
    CEA/DSM/IRFU, France
  • O. Delferrière
    CEA/IRFU, Gif-sur-Yvette, France
  • B. Launé, J. Lesrel
    IPN, Orsay, France
 
  The FAIR Proton Linac is a 70mA, 70 MeV. 325 MHz linear accelerator based on CH cavities. The focusing scheme is provided by an asynchronous KONUS lattice period. Random misalignment and rotation errors of the quadrupoles, together with phase and RF settings of the power source plays a major role in beam losses. Those effects are investigated and the beam dynamics results, including several source of errors, are presented and discussed.  
 
THPWO016 Superconducting CH Cavities for Heavy Ion Acceleration 3794
 
  • F.D. Dziuba, M. Amberg, M. Busch, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • M. Amberg, K. Aulenbacher, W.A. Barth, S. Mickat
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
 
  Funding: Work supported by HIM, GSI and BMBF Contr. No. 06FY7102
To demonstrate the operation ability of superconducting (sc) Crossbar-H-mode (CH) cavity technology a 217 MHz structure of this type is under development at the Institute for Applied Physics (IAP) of Frankfurt University. The cavity has 15 accelerating cells and a design beta of 0.059. It will be equipped with all necessary auxiliaries like a 10 kW power coupler and a tuning system. Currently, the cavity is under construction. Furthermore, this cavity will serve as demonstrator for a sc continuous wave (cw) LINAC at GSI. The proposed cw LINAC is highly requested to fulfil the requirements of nuclear chemistry and especially for a competitive production of new Super Heavy Elements (SHE) in the future. A full performance test by injecting and accelerating a beam from the GSI High Charge Injector (HLI) is planned in 2014. The current status of the sc CH cavity and the demonstrator project is presented.
 
 
THPWO018 Power Tests of the 325 MHz 4-ROD RFQ Prototype 3800
 
  • B. Koubek, H. Podlech, A. Schempp, J.S. Schmidt
    IAP, Frankfurt am Main, Germany
 
  For the FAIR project of GSI as part of the proton linac a 325 MHz RFQ with an output energy of 3 MeV is planned. Simulations that have lead to a prototype of a 4-Rod Radio Frequency Quadrupole (RFQ) have been done. The RF parameters have been verified with the prototype. Power tests of this 6 stem copper RFQ should now verify parameters like shunt impedance, electrode voltage and give answers of how much power the structure can sustain.