Author: Obina, T.
Paper Title Page
MOPEA028 Present Status of the KEK PF-Ring and PF-AR 136
 
  • K. Tsuchiya, S. Asaoka, K. Haga, K. Harada, T. Honda, Y. Honda, M. Isawa, Y. Kamiya, T. Miyajima, H. Miyauchi, S. Nagahashi, N. Nakamura, T. Nogami, T. Obina, T. Ozaki, H. Sagehashi, H. Sakai, S. Sakanaka, H. Sasaki, Y. Sato, M. Shimada, K. Shinoe, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, R. Takai, Y. Tanimoto, T. Uchiyama, A. Ueda, K. Umemori, M. Yamamoto
    KEK, Ibaraki, Japan
  • H. Takaki
    ISSP/SRL, Chiba, Japan
 
  In KEK, two synchrotron light sources have been operated. One is the 2.5 GeV Photon Factory storage ring (PF-ring) and the other is the 6.5 GeV Photon Factory advanced ring (PF-AR). In this paper, present operational status and recent R&D activities such as fast local bump system for helicity switching undulator, hybrid injection system, pulsed-sextupole injection, etc. Futhermore, upgrade plan towards the top-up injection of 6.5 GeV PF-AR ring is underway. Construction of the straight injection tunnel from linac to PF-AR will be started next fiscal year. Design detail and strategy for the injection scheme will be reported.  
 
TUPWA009 Bunch by Bunch Intra-Bunch Feedback System for Curing Transverse Beam Instabilities at the J-PARC MR 1739
 
  • O. A. Konstantinova, Y.H. Chin, Y. Kurimoto, T. Obina, M. Okada, K. Takata, M. Tobiyama, T. Toyama
    KEK, Ibaraki, Japan
  • Y. Shobuda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  At the J-PARC Main Ring (MR), transverse instabilities have been observed during the injection and at the onset of acceleration with large particle losses. The present bunch by bunch feedback system, operating in a narrowband mode, has been effectively suppressing these instabilities, allowing the beam power to reach 230kW with only 400W of particle losses. The observed beam signals show that bunches are still executing complicated intra-bunch oscillations even if the narrowband feedback system is on, though they are not imposing significant particle losses at present. The new and more advanced broadband feedback system has been developed for control of the intra-bunch oscillations and further reduction of particle losses. The elaborate analysis code has been also developed on the MATLAB platform to analyse effects of the broadband feedback system on intra-bunch oscillations. This paper describes the development of these advanced instruments and presents the analysis of the latest beam test results using the MATLAB code.  
 
WEPWA015 Progress in Construction of the 35 MeV Compact Energy Recovery Linac at KEK 2159
 
  • S. Sakanaka, S. Adachi, M. Akemoto, D.A. Arakawa, S. Asaoka, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sasaki, K. Satoh, M. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Takahashi, R. Takai, T. Takenaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S.M. Matsuba, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • H. Takaki
    ISSP/SRL, Chiba, Japan
 
  The 35-MeV Compact Energy Recovery Linac (the Compact ERL or cERL) is under construction at the High Energy Accelerator Research Organization (KEK) in Japan. With the Compact ERL, we aim at establishing cutting-edge technologies for the GeV-class ERL-based synchrotron light source. To install the accelerator components of the cERL, we have constructed a shielding room having an area of about 60 m x 20 m. We have then installed a 500-kV DC photocathode gun, a 5-MV superconducting (SC) cryomodule for the injector, a 30-MV SC cryomodule for the main linac, and some of the other components. High-power test on the main SC cryomodule is underway in December, 2012. High-power or high-voltage tests on the injector cryomodule and on the DC gun are planned during January to March, 2013. An injector of the Compact ERL will be commissioned in April, 2013. We report the newest status of its construction.  
 
THPFI012 Design of the cERL Vacuum System 3315
 
  • Y. Tanimoto, S. Asaoka, T. Honda, T. Nogami, T. Obina, R. Takai
    KEK, Ibaraki, Japan
 
  The compact Energy Recovery Linac (cERL) is being constructed as a test accelerator for the ERL-based future light source at KEK. In the design of the cERL, electron beams with low normalized emittance (0.1 mm·mrad) and high average current (10 mA) are generated at a 500-kV gun, and accelerated up to 125 MeV at superconducting (SC) cavities that make energy recovery. The vacuum system should accommodate such high intensity, ultrashort bunch (0.1 ~ 3 ps) electron beams, and be designed so as to minimize its loss factor. Therefore, low impedance vacuum components, such as zero-gap flanges and rf-shielded screen monitors, have been developed. Extra high and clean vacuum is required in the vicinity of the SC cavities to maintain their high gradient operation, and those beam tubes are coated by Non-Evaporable Getter (NEG) films. Because of the low beam energy, photon absorbers are not necessary and the beam tubes can be made of stainless steel. However, the photon scrubbing effect is so limited that the beam tubes should be ready for in-situ bakeout and are wrapped with thin Kapton heaters, which are also useful for the NEG-coating activation.