Author: Mounet, N.
Paper Title Page
TUPFI034 Observations of Two-beam Instabilities during the 2012 LHC Physics Run 1418
 
  • T. Pieloni
    EPFL, Lausanne, Switzerland
  • G. Arduini, X. Buffat, R. Giachino, W. Herr, M. Lamont, N. Mounet, E. Métral, G. Papotti, B. Salvant, J. Wenninger
    CERN, Geneva, Switzerland
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  During the 2012 run coherent beam instabilities have been observed in the LHC at 4 TeV, during the betatron squeeze and in collision for special filling patterns. Several studies to characterize these instabilities have been carried out during operation and in special dedicated experiments. In this paper we summarize the observations collected for different machine parameters and the present understanding of the origin of these instabilities.  
 
TUPFI035 Head-on and Long range Beam-beam Interactions in the LHC: Effective Tune Spread and Beam Stability due to Landau Damping 1421
 
  • X. Buffat
    EPFL, Lausanne, Switzerland
  • W. Herr, N. Mounet, E. Métral, T. Pieloni
    CERN, Geneva, Switzerland
 
  We discuss the Landau damping of coherent instabilities in the presence of betatron tune spread. This tune spread can originate from dedicated non-linear magnets such as octupoles, or through the beam-beam interaction. In the latter case we have to distinguish the contribution from head-on and parasitic beam-beam interactions and the collision pattern of different bunches plays an important role. The interplay of these sources of tune spread and the resulting stability is discussed for the case of the LHC.  
 
TUPFI036 Observation of Beam Instabilities with Very Tight Collimation 1424
 
  • H. Burkhardt, N. Mounet, T. Pieloni
    CERN, Geneva, Switzerland
 
  We report about the observation of instabilities in the LHC in special runs with high β* and very tight collimation down to 2 σ which increases the transverse impedance significantly. The losses appeared primarily on the highest intensity, non-colliding bunches which can be interpreted as evidence for insufficient Landau damping. We describe the beam conditions, observations and possible explanations for the observed effects.  
 
TUPME032 Update on Beam Induced RF Heating in the LHC 1646
 
  • B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, W. Bartmann, P. Baudrenghien, O.E. Berrig, A. Bertarelli, C. Bracco, E. Bravin, G. Bregliozzi, R. Bruce, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, M. Deile, J.F. Esteban Müller, P. Fassnacht, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, S. Jakobsen, O.R. Jones, O. Kononenko, G. Lanza, L. Lari, T. Mastoridis, V. Mertens, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, R. Schmidt, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • H.A. Day
    UMAN, Manchester, United Kingdom
  • L. Lari
    IFIC, Valencia, Spain
 
  Since June 2011, the rapid increase of the luminosity performance of the LHC has come at the expense of increased temperature and pressure readings on specific near-beam LHC equipment. In some cases, this beam induced heating has caused delays whilie equipment cools down, beam dumps and even degradation of these devices. This contribution gathers the observations of beam induced heating attributable to beam coupling impedance, their current level of understanding and possible actions that are planned to be implemented during the long shutdown in 2013-2014.  
 
TUPWA047 Collimator Impedance Measurements in the LHC 1817
 
  • N. Mounet, R. Bruce, E. Métral, S. Redaelli, B. Salvachua, B. Salvant, G. Valentino
    CERN, Geneva, Switzerland
 
  The collimation system of the LHC is one of the largest impedance contributors of the machine, in particular for its imaginary part. To evaluate the collimator impedance and its evolution with integrated luminosity, several measurement campaigns were performed along the year 2012, in which collimator jaws were moved back-and-forth leading to significant tune shifts for a nominal intensity bunch in the machine. These observations are compared to the results from HEADTAIL simulations with the impedance model in its current state of development.  
 
THOBB102 Beam Coupling Impedance Localization Technique Validation and Measurements in the CERN Machines 3106
 
  • N. Biancacci, G. Arduini, T. Argyropoulos, H. Bartosik, R. Calaga, K. Cornelis, S.S. Gilardoni, N. Mounet, E. Métral, Y. Papaphilippou, S. Persichelli, G. Rumolo, B. Salvant, G. Sterbini, R. Tomás, R. Wasef
    CERN, Geneva, Switzerland
  • M. Migliorati, L. Palumbo
    URLS, Rome, Italy
 
  The beam coupling impedance could lead to limitations in beam brightness and quality, and therefore it needs accurate quantification and continuous monitoring in order to detect and mitigate high impedance sources. In the CERN machines, for example, kickers and collimators are expected to be the main contributors to the total imaginary part of the transverse impedance. In order to detect the other sources, a beam based measurement was developed: from the variation of betatron phase beating with intensity, it is possible to detect the locations of main impedance sources. In this work we present the application of the method with beam measurements in the CERN PS, SPS and LHC.  
slides icon Slides THOBB102 [7.224 MB]  
 
TUPFI031 Effect of Collision Pattern in the LHC on the Beam Stability: Requirements from Experiments and Operational Considerations 1409
 
  • W. Herr, G. Arduini, R. Giachino, E. Métral, G. Papotti, T. Pieloni
    CERN, Geneva, Switzerland
  • X. Buffat, N. Mounet
    EPFL, Lausanne, Switzerland
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  Coherent instabilities of bunches in the LHC bunch train can be observed when the tune spread from beam-beam interactions becomes insufficient to ensure Landau damping. In particular these effects are seen on bunches with a reduced number of beam-beam interactions due to their collision pattern. Furthermore, such a reduction of the necessary stability can occur during the processes when the beams are prepared for collisions or during the optimization procedure. We discuss the observations and possible countermeasures, in particular alternatives to the existing beam manipulation processes where such a situation can occur.  
 
TUPFI032 Observation of Instabilities in the LHC due to Missing Head-on Beam-beam Interactions 1412
 
  • W. Herr, G. Arduini, R. Giachino, E. Métral, G. Papotti, T. Pieloni
    CERN, Geneva, Switzerland
  • X. Buffat, N. Mounet
    EPFL, Lausanne, Switzerland
 
  We report the observation of coherent instabilities on individual bunches out of the LHC bunch train. These instabilities occured spontaneously after several hours of stable beam while in other cases they were related to the application of a small transverse beam separation during a luminosity optimization. Only few bunches were affected, depending on there collision scheme and following various tests we interprete these instabilities as a sudden loss of Landau damping when the tune spread from the beam-beam interaction became insufficient.