Author: Letchford, A.P.
Paper Title Page
WEPFI067 FETS RF System Design and Circulator Testing 2851
 
  • S.M.H. Alsari, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • M. Dudman, A.P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) is an experiment based at the Rutherford Appleton Laboratory (RAL) in the UK. In this experiment, the first stages necessary to produce a very high quality, chopped H ion beam as required for the next generation of high power proton accelerators (HPPAs) are designed, built and tested. HPPAs with beam powers in the megawatt range have many possible applications including drivers for spallation neutron sources, neutrino factories, accelerator driven sub-critical systems, waste transmuters and tritium production facilities. RF system outline and design options of the waveguide and coaxial parts and shielding are presented and discussed in this paper. Experimental measurements of the system’s circulator will be presented as part of the system testing results.  
 
MOPWA049 Status Report of the FETS Photo Detachment Emittance Instrument at RAL 783
 
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • G.E. Boorman, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • G.E. Boorman, A. Bosco, S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • V.E. Scarpine
    Fermilab, Batavia, USA
 
  The Front End Test Stand at the Rutherford Appleton Laboratory (RAL) is being developed to demonstrate a chopped H beam of 60 mA at 3 MeV with 10% duty cycle. Due to the high beam power it is advisable to use the technique of photo detachment to avoid intrusive methods. It is intended to apply this technique to perform emittance measurements at the output of the RFQ at full power. This requires a dedicated diagnostics dipole with a special-made vacuum chamber giving room for the different beam paths necessary to install a particle detector to measure the produced neutrals. Other aspects are the beam transport and influence of the dipole and its fringe field to the beam transport Other considerations are the installation of the laser, the optics and the particle detector itself.  
 
THPWA041 Acceptance and Transmission Simulations of the FETS RFQ 3720
 
  • S. Jolly, R.T.P. D'Arcy
    UCL, London, United Kingdom
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  A 4m-long, 324MHz four-vane RFQ, consisting of four coupled sections, has been designed for the Front End Test Stand (FETS) at RAL in the UK. A novel design method, integrating the CAD and electromagnetic design of the RFQ with beam dynamics simulations, was used to optimise the design of the RFQ. With the design of the RFQ fixed, the focus has been on optimising the transmission of the RFQ at 3 MeV and matching the output of the FETS Low Energy Beam Transport (LEBT) to the RFQ acceptance. Extensive simulations have been carried out using General Particle Tracer (GPT) to map out the acceptance of the FETS RFQ for a 65 keV H input beam. Particular attention has focussed on optimising the simulations to match the optimised output of the FETS Penning-type H ion source. Results are presented of the transverse phase space limits on the RFQ input acceptance in both the zero current and full space charge regimes.  
 
THPWA042 Investigation of Space Charge Compensation at FETS 3723
 
  • J.K. Pozimski, S.M.H. Alsari, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • D.C. Faircloth, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  In order to contribute to the development of high power proton accelerators in the MW range, to prepare the way for an ISIS upgrade and to contribute to the UK design effort on neutrino factories, a front end test stand (FETS) is being constructed at the Rutherford Appleton Laboratory (RAL) in the UK. The aim of the FETS is to demonstrate the production of a 60 mA, 2 ms, 50 pps chopped beam at 3 MeV with sufficient beam quality. The ion source and LEBT are operational with the RFQ under manufacture. As a more detailed knowledge is of interest also for other projects like ESS and LINAC4 the FETS LEBT was updated to perform a detailed experimental analysis of space charge compensation utilizing a pulsed decompensation electrode together with a residual gas ion energy spectrometer and a fast emittance measurement device. In the FETS LEBT a high degree of space charge compensation (~90%) and a rise time of space charge compensation around ~ 50 μs could be concluded from measurements . In this paper the results of the experimental work will be presented together with discussion of the findings in respect to beam transport.  
 
THPWA043 Production of the FETS RFQ 3726
 
  • P. Savage, M. Aslaninejad, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • M. Dudman, D.S. Wilsher
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • A. Garbayo
    AVS, Eibar, Gipuzkoa, Spain
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) project at RAL will use a 324 MHz 4-vane Radio Frequency Quadrupole (RFQ) to accelerate H ions from 65keV to 3 MeV. This paper will report on the current status of the production of the FETS RFQ and will detail the manufacturing strategy used to produce the major and minor vanes. In addition the inspection results will be shown and the experiences from the assembly and alignment operations will be shared. Finally, the design of the bead-pull apparatus, end flanges, tuners and pick-ups required to measure the frequency and field-flatness of the assembled RFQ will be discussed.  
 
THPWO086 Status of the RAL Front End Test Stand 3963
 
  • A.P. Letchford, M.A. Clarke-Gayther, D.C. Faircloth, S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.M.H. Alsari, M. Aslaninejad, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • G.E. Boorman, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • R.T.P. D'Arcy, S. Jolly
    UCL, London, United Kingdom
  • C. Gabor, D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) under construction at RAL is a demonstrator for the front end systems of a future high power proton linac. Possible applications include a linac upgrade for the ISIS spallation neutron source, new future neutron sources, accelerator driven sub-critical systems, a neutrino factory etc. Designed to deliver a 60mA H-minus beam at 3MeV with a 10% duty factor, FETS consists of a high brightness ion source, magnetic low energy beam transport (LEBT), 4-vane 324MHz radio frequency quadrupole, medium energy beam transport (MEBT) containing a high speed beam chopper and non-destructive photo-detachment diagnostics. This paper describes the current status of the project and future plans.