Author: Kuan, C.K.
Paper Title Page
WEPME049 An Application of Laser Position Sensing Detector for Magnet Centralizing System 3040
 
  • C.-S. Lin, J.-R. Chen, M.L. Chen, P.S.D. Chuang, H.C. Ho, K.H. Hsu, D.-G. Huang, C.K. Kuan, W.Y. Lai, C.J. Lin, H.C. Lin, H.M. Luo, S.Y. Perng, P.L. Sung, T.C. Tseng, H.S. Wang, M.H. Wu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) project has been proposed to create a 3GeV synchrotron light source. The designated ultra-low emittance of this new light source requires high precision positioning of storage ring magnets. The alignment of all magnets is very importance since it directly affects the closed orbit of electron beams. Previously, conventional on-site alignment of the magnets was mainly relying on the theodolite performance. The cumulated errors could be in the order of 0.1mm. In this paper, a new alignment scheme is proposed to enhance the on-site alignment of magnets for TPS project. To achieve the high precision requirements, a device possessing the advantages of expansion mandrel in conjunction with Position Sensing Detector (PSD) is proposed. The development of this alignment device is anticipated to provide a better mechanism to properly align the centers of the both quadrupole and sextupole magnets on girder with less than 30μm positioning errors.  
 
WEPME050 Alignment Design and Status of Taiwan Photon Source 3043
 
  • W.Y. Lai, J.-R. Chen, M.L. Chen, P.S.D. Chuang, H.C. Ho, K.H. Hsu, D.-G. Huang, C.K. Kuan, C.-S. Lin, C.J. Lin, H.C. Lin, H.M. Luo, S.Y. Perng, P.L. Sung, T.C. Tseng, H.S. Wang, M.H. Wu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) is a new 3-GeV ring with characteristics of great brightness and small emittance, at present under construction at National Synchrotron Radiation Research Center (NSRRC) Taiwan. The positioning of the magnets is highly sensitive to alignment errors, and the entire building will be constructed half underground at depth 12 m relative to Taiwan Light Source (TLS) for stability reasons; for these reasons the survey and alignment work is confined and difficult. To position magnets precisely and quickly, a highly accurate auto-tuning girder system combined with a survey network was designed to accomplish the alignment tasks. The survey network includes a preliminary Global Positioning System (GPS) network and a laser tracking network. The position data from the survey network define a basis for the system of motorized girders to auto-tune and to improve the accuracy. The detailed survey and alignment design, installation process is described in this paper.  
 
THPFI072 Heat Transfer Analysis of a Water-cooled Channel for the TPS Front End Components 3466
 
  • C.K. Kuan, J.-R. Chen, Y.T. Cheng, J.Y. Chuang, H.Y. Lin, P.A. Lin, Y.K. Liu, I.C. Sheng, T.C. Tseng
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The masks, absorbers and slits must withstand the extremely high power and power density in the TPS front end. The material always used is OFHC or Glidcop. One solution is to increase the cooling efficiency of the water-cooled channel in these components. With the restrictions of water pressure < 7 kg/cm2 and water flow velocity < 3 m/s, the wire coil is chosen to enhance the average heat- transfer coefficient and increase not too much the loss of water pressure. With a water channel of diameter 7.5 mm and wire coil inserts of pitch 7.5 mm and wire diameter 1 mm, the cooling efficiency becomes enhanced 1.4 to 2 times in the components of the TPS front end. The wire coils of varied pitches are simulated and calculated in this work. We also compare our investigated data with other experimental data of other authors.  
 
THPME039 The Control System for the Purification Station at NSRRC 3597
 
  • T.F. Lin, S.-H. Chang, W.-S. Chiou, F. Z. Hsiao, C.K. Kuan, H.C. Li, C.P. Liu, H.H. Tsai
    NSRRC, Hsinchu, Taiwan
 
  A cryogenic adsorber was used liquid nitrogen to trap the impurities from gaseous helium in the helium cryogenic system. NSRRC parallel connected five cryogenic adsorbers for the cryogenic system in the year 2011; five additional cryogenic adsorbers will be installed in the year 2013. The original design of liquid nitrogen filling was motored and controlled manually to keep the efficiency of the purifying. The regeneration of the cryogenic adsorber must be performed manually as well by using heater and vacuum pump after saturated of the cryogenic adsorber. NSRRC develop one control system that is allowed the liquid nitrogen filling and regeneration process turns into automatically. This paper is aimed to present the construction of the control system. The installation and test results will be included in this paper as well.  
 
THPME040 The Installation and Commissioning of the Helium Cryogenic System for theTPS Project 3600
 
  • H.H. Tsai, S.-H. Chang, W.-S. Chiou, F. Z. Hsiao, C.K. Kuan, H.C. Li, T.F. Lin, C.P. Liu
    NSRRC, Hsinchu, Taiwan
 
  The construction of an electron accelerator with energy 3 GeV is under way for high brilliance and flux X-ray photon source at NSRRC. There will be eventually four superconducting radio frequency (SRF) cavities installed to maintain the electron energy. The helium cryogenic system has been designed and fabricated to provide the required liquid helium for SRF cavities. The cryogenic system consists of the 700-W refrigerator, the 315-kW variant frequency compressor, the oil removal system, the recovery compressor system, the gas helium buffer tanks, and one 7000-L liquid helium Dewar. The overall system installation and commissioning will be presented and discussed in this paper.