Author: Klopf, J.M.
Paper Title Page
WEPWA077 Aperture Test for Internal Target Operation in the JLAB High-current ERL 2289
  • S. Zhang, S.V. Benson, G.H. Biallas, K. Blackburn, J.R. Boyce, D.B. Bullard, J.L. Coleman, J. Delk, D. Douglas, P. Evtushenko, C.W. Gould, J.G. Gubeli, F.E. Hannon, D. Hardy, C. Hernandez-Garcia, K. Jordan, J.M. Klopf, R.A. Legg, M. Marchlik, W. Moore, G. Neil, J. Powers, T. Powers, D.W. Sexton, M.D. Shinn, C. Tennant, R.L. Walker, G.P. Williams, F.G. Wilson
    JLAB, Newport News, Virginia, USA
  • J. Balewski, J. Bernauer, W. Bertozzi, R.F. Cowan, P.F. Fisher, E. Ihloff, A. Kelleher, R. Milner, L. Ou, B.A. Schmookler, C. Tschalär
    MIT, Middleton, Massachusetts, USA
  • N. Kalantarians
    Hampton University, Hampton, Virginia, USA
  Funding: Supported by the Commonwealth of Virginia, U.S. DOE Nuclear and High Energy Physics, and by the U.S. DOE Basic Energy Sciences under contract No. DE-AC05-060R23177.
A high current beam transmission test has been successfully completed at the JLAB FEL Facility, culminating in very low-loss transmission of a high current CW beam through a small aperture. The purpose of this test was to determine if an ERL is capable of meeting the stringent requirements imposed by the use of a 1018/cm3 internal gas target proposed for the DarkLight experiment*. Minimal beamline modifications were made to create a machine configuration that is substantially different from those used in routine UV or IR FEL operation. A sustained (8 hour) high power beam run was performed, with clean transmission through a 2 mm transverse aperture of 127 mm length simulating the target configuration. A beam size of 50 um (rms) was measured near the center of the aperture. Experimental data from a week-long test run consistently exhibited beam loss of only a few ppm on the aperture while running 4.5 mA current at 100 MeV – or nearly 0.5 MW beam power. This surpassed the users’ expectation and demonstrated a unique capability of an ERL for this type of experiments. This report presents a summary of the experiment, a brief overview of our activities, and outlines future plans.
* P. Fisher, et al.,“Jlab PR-11-008: A Proposal for the DarkLight Experiment at the Jefferson Laboratory Free Electron Laser.”
WEPWO087 Parameter Optimization for Laser Polishing of Niobium for SRF Applications 2498
  • L. Zhao, M.J. Kelley
    The College of William and Mary, Williamsburg, USA
  • M.J. Kelley, J.M. Klopf, C.E. Reece
    JLAB, Newport News, Virginia, USA
  Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surfaces. Results show that microsmoothing of the surface without ablation is achievable.  
poster icon Poster WEPWO087 [1.683 MB]