Author: Haenisch, P.     [Hänisch, P.]
Paper Title Page
MOPME007 High Resolution Synchrotron Light Analysis at ELSA 482
 
  • S. Zander, F. Frommberger, P. Hänisch, W. Hillert, M.T. Switka
    ELSA, Bonn, Germany
 
  Funding: Funded by the DFG within the SFB/ TR 16
The Electron Stretcher Facility ELSA provides polarized electrons with energies up to 3.5 GeV for external hadron experiments. In order to suffice the need of stored beam intensities towards 200 mA, advanced beam instability studies need to be carried out. An external diagnostic beamline for synchrotron light analysis has been set up and provides the space for multiple diagnostic tools including a streak camera with time resolution of < 1 ps. Beam profile measurements are expected to identify instabilities and reveal their thresholds. The effect of adequate countermeasures is subject to analysis. The current status of the beamline development will be presented.
 
 
WEPFI006 Broad and Narrow Band Feedback Systems at ELSA 2714
 
  • M. Schedler, F. Frommberger, P. Hänisch, W. Hillert, C. Reinsch
    ELSA, Bonn, Germany
 
  At the Electron Stretcher Facility ELSA of Bonn University, an upgrade of the maximum stored beam current from 20 mA to 200 mA is planned. The storage ring operates applying a fast energy ramp of 6 GeV/s from 1.2 GeV to 3.5 GeV. The intended upgrade is mainly limited due to the excitation of multibunch instabilities. As a countermeasure, we succesfully commissioned state-of-the-art bunch by bunch feedback systems in the longitudinal and the two transverse dimensions. In addition, a narrow band cavity based feedback system for damping the most harmful longitudinal multi bunch mode caused by a HOM of the accelerating cavities is under construction.  
 
THPFI006 A New External Beamline for Detector Tests 3300
 
  • N. Heurich, F. Frommberger, P. Hänisch, W. Hillert, S. Patzelt
    ELSA, Bonn, Germany
 
  At the electron accelerator ELSA, a new external beamline is under construction, whose task is to provide a primary electron beam for detector tests. In the future, the accelerator facility will not only be offering an electron beam to the currently installed double polarization experiments for baryon spectroscopy, but to the new "Research and Technology Center Detector Physics" as well. This institution will be established near the accelerator in Bonn and is charged with the development of detectors for particle and astroparticle physics. The requirement for the new beamline is to be able to vary the beam parameters such as beam current and width over a wide range. With the resonance extraction method, it is possible to extract electrons with a maximum energy of 3.2 GeV slowly to the test area. A quasi-continuous external beam current of 1 fA to 100 pA can be offered. A further reduction of the beam current can be realized by utilizing the single-pulse operation mode at ELSA. The beam width can be changed in both transverse directions from 1 mm to 8 mm.