Author: Galonska, M.
Paper Title Page
THXB201 Novel Techniques and Challenges in Hadron Therapy 3112
 
  • Th. Haberer, E. Feldmeier, M. Galonska, A. Peters, C. Schömers
    HIT, Heidelberg, Germany
 
  This talk should review novel techniques and challenges for beam delivery systems with various beam scanning methods (such as 3D scanning, 4D scanning and so on) to conform the beam dose to the tumor shape in proton and carbon ion therapy, as developed by PSI, GSI, HIMAC, IMP etc. Besides traditional accelerators such as cyclotrons and synchrotrons, the talk should review the technical challenges and prospects for future compact hadron therapy accelerators such as DWA, laser accelerators and so on.  
slides icon Slides THXB201 [4.934 MB]  
 
THPWA004 The HIT Gantry: From Commissioning to Operation 3636
 
  • M. Galonska, S. Brons, R. Cee, Th. Haberer, K. Höppner, J.M. Mosthaf, A. Peters, S. Scheloske, T. Winkelmann
    HIT, Heidelberg, Germany
 
  The patient treatment at the first 360° raster scanning heavy ion gantry of the Heidelberg Ion Therapy Facility (HIT) started in October 2012 using proton and carbon ion beams. HIT is the first dedicated proton and carbon cancer therapy facility in Europe. It uses full 3D intensity controlled raster scanning dose delivering method of pencil beams. The ion energy ranges from ~50 up to 430 MeV/u (ion penetration depths of 20 to 300 mm in water). Beams are provided by a linac-synchrotron-system to four high energy beam lines: 2 horizontal patient treatment rooms; 1 horizontal experimental cave for quality assurance, development, and research work; and the heavy ion gantry. From the first commissioning the libraries of carbon and proton pencil beams at the gantry had been offered with the whole variety of ion beam properties: 255 energy steps, 4 beam foci, 360°, and 10 intensities (106-1010/spill) regarding the central beam. This paper reflects the impact of the subsequent preclinical testing including beam size/position, and dose measurements within the irradiation field of 20x20 cm2 on the further improvement of the ion optical settings of the gantry high energy transfer line.