Novel Techniques and Challenges in Hadron Therapy

Thomas Haberer Heidelberg Ion Beam Therapy Center Institute of Applied Physics, Goethe-University Frankfurt am Main

Reduction of the Normal Tissue Dose

conventional

Target dose 32 Gy/GyE

charged particles

22 Gy 18 Gy 20 Gy Dose comparison bone marrow heart intestinal

< 1 GyE <.5 GyE <.5 GyE

Heldelberg lonenstrahl-Theraple Centrum

Pencil Beam vs. Dose Distribution

entrance channel:

- low physical dose
- low rel. biol. effiency

tumour:

- high physical dose
- high rel. biol. effiency

Passive Dose Delivery

Treatment nozzle for a passive scattering proton therapy beamline

© M. Goitein: Application of Physics in Radiation Oncology

Protons (Pedroni et al., PSI): spot scanning gantry 1D magnetic pencil beam scanning plus passive range stacking (digital range shifter)

Haberer et al., NIM A , 1993

Ions (Haberer et al., GSI): raster scanning, 3D active, 2D magnetic pencil beam scanning plus active range stacking (spot size, intensity) in the accelerator

Beam Scanning

Th. Haberer, Heidelberg Iontherapy Center

Single beam...

+ scanning in depth

(lateral scanning

= 3d conformed dose)

Rasterscan Method

Haberer et al., NIM A , 1993

Scanned Carbon vs. Intensity Modulated Photons

scanned carbon 3 fields

IMRT 9 fields

reduced integral dose steeper dose gradients less fields increased biological effectiveness

courtesy O. Jäkel, HIT

Iontherapy – established for adenoidcystic carcinomas (salivary glands)

Fast tumor response

pre ion-RT

Treatment plan

6 weeks post R

Hospital-based Facilities

- typically run at university hospitals treating high patient numbers in a multitude of disciplines
- major investment, business plan requires high patient throughput
- particle accelerator feeds several treatment vaults
- beam scanning is now state-of-the-art
- anyhow, many existing facilities use scattering systems to shape the dose distribution
- reimbursement for proton treatments in the US
- reimbursement for proton and carbon treatments in the EC and Japan

Heidelberg Ion Therapy Center (HIT)

Heidelberg Ion Therapy Center "Flexibility and Precision"

- compact design 60m x 70m
- full clinical integration
- rasterscanning only
- world-wide first ion gantry
- > 1000 patients and
 > 15.000 fractions/yr

Th. Haberer, Heidelberg Ion Therapy Center

- low-LET modality: Protons (Helium)
- high-LET modality: Carbon (Oxygen)
- ion selection within minutes

leidelberg lonenstrahl-Theraple Centrum

• R+D in a broad range

CNAO - Pavia

First patient: September 2011 (first with C-ions: 13 Nov. '12)

So far about 80 patients

Courtesy Sandro Rossi CNAO

The heart of CNAO

SYNCHROTRON

OPTIMIZED for an hospital based facility (all lon-therapy centres existing in the World adopt it):

- Safety
- Efficiency
- Reliability
- Maintainability

-Designed by

PIMMS/TERA

IBA Proton Facility

Fictitious Accounting

Investment

~ 100M€

Reimbursement ~ 20k€ (EC) / ~ 50k€ (US)

Running costs / a Staff Investment costs ~ 8 M€ Maintenance Energy Reinvestment Total

- ~ 5 M€ (~ 70 FTEs)
- ~ 5 M€
 - ~_2_M€
- ~ 1 M€
 - ~ 21 M€

=> More than 1000 treatments per year needed!

Challenges

Multi-vault design only adequate for large clinical centers

Single or two-room designs would open a new market

Cut investment via compact design (acc, beamlines, gantry) would help. To really change this setting magnetic fields need to be more than doubled.

Anyhow, the beam quality (lateral scattering, fragmentation, ...) and finally the conformity of the dose distribution (typically via beam scanning) must not be compromised!

Compact SynchroCyclotrons

Schirrmeister, Varian medical, designstudy, Erice 2009

Th. Haberer, Heidelberg Ion Therapy Center

Heidelberg ionenstrahi-Therapie Centrum

Compact SynchroCyclotrons

The MEVION S250 Proton Therapy System is USFDA 510(k) cleared and complies with MDD/CE requirements.

www.mevion.com

s.c. 9 T Nb3Sn , 250 MeV + energy degrader passive dose delivery

Installation at Washington University School of Medicine in St. Louis (2012)

Two-Room Proton Solution

IBA ProteusNano

www.iba-worldwide.com

Th. Haberer, Heidelberg Ion Therapy Center

Heldelberg Ionenstrahil-Theraple Centrum 🔪

Questions

Will single-room systems allow for pencil-beam scanning? (beam quality and dose conformity)

Costly accelerators may run idle while patients are immobilized. Two-room facilities may offer an attractice cost-benefit-ratio.

> protons, passive ithemba, 2 fields

rasterscanned carbon GSI, 2 fields

Questions

Will single-room systems allow for pencil-beam scanning? (beam quality and dose conformity)

Costly accelerators may run idle while patients are immobilized. Two-room facilities may offer an attractice cost-benefit-ratio.

> protons, passive ithemba, 2 fields

rasterscanned carbon GSI, 2 fields

Laser Ion Acceleration

- Laser: 50 fs, 50 J (Petawatt!)
- > I = 10²¹ W/cm²
- 10¹¹ protons up to 300 MeV should be possible (~ 80 MeV reached)

Repetition rate? Intensity control? Radiation field? Energy spectrum? Dose delivery?

Oncoray, Dresden, IPAC2014

Laser Ion Acceleration

Energy Selection and Beam Collimation

Movable aperture to select protons of desired energy with sharp beam penumbra

to be integrated in a rotational gantry

courtesy, E.E. Klein, New developments in proton therapy delivery systems

Dielectric Wall Accelerator

The DWA enables protons (ions) to be accelerated at gigantic field gradients. Wide-bandgap optical switches allow for the direct conversion of a light signal to rf.

Dimensions close to conventional photontherapy systems can be imagined.

www.cpac.pro

Patient Throughput Optimization in Existing Facilities

Our fictitious business plan asks for 1000 patients per year. This translates into 20000 fractions and 45000 fields per year. A reliable facility may be used clinically at 275 days and about 160 fields per day have to be delivered during a 14 hours period. Finally a single field needs to be delivered in about 5 minutes. (This is by far too optimistic.)

There is a strong need to minimize the dose delivery time!

The accelerator duty-cycle, intensity profile and the scanning beam dose delivery should be optimized.

Potential of Synchrotron Spill Feedback

- beam-on time reduction up to 25% / 45%!
 - reduced patient stress
 - higher throughput
- higher acc operational stability
- dose delivery at increased precision (S/N – ratio)
- less interlocks

Christian Schömers, HIT Heidelberg, Poster session

Heidelberg ionenstrahi-Therapie Centrum

Heldelberg Ionenstrahl-Therapte Centrum

Heidelberg ionenstrahil-Therapte Centrum

Heidelberg ionenstrohi-Theraple Contrun

Treatment-plan-specific Feedback

Intensity [particles / s]

2

3

time [s]

5

fluence map range: 1 ... 100

- Extracted intensity varies from rasterpoint to rasterpoint
- Each raster point is irradiated by an individual particle rate: up to 45% time saving
- Intensity can be increased within < 1ms, decrease is relevantly slower => process data!
 10^{×10⁷}₁

Faster Irradiation via Feed-Back of Magnetic Fields

Eike Feldmeier, HIT Heidelberg, Poster session

Faster Irradiation via Feed-Back of Magnetic Fields

Eike Feldmeier, HIT Heidelberg, Poster session

Faster Irradiation via Feed-Back of Magnetic Fields

Eike Feldmeier, HIT Heidelberg, Poster session

Faster Irradiation via Feed-Back of Magnetic Fields

Eike Feldmeier, HIT Heidelberg, Poster session

Faster Irradiation via Feed-Back of Magnetic Fields

Gantries / Challenges

Fixbeam horizontal

with Gantry: relevant sparing of Normal tissue

Th. Haberer, Heidelberg Ion Therapy Center

Design for HIT

- isocentric barrel-type
- world-wide first ion gantry
- 2D beam scanning upstream to final bending, almost parallel due to edge focussing
- ± 180° rotation
 3° / second
- 13m diameter
 25m length
 600 to rotating
 (145 to magnets)

Patient Environment / Nozzle

Patient Gantry Room November 2007

Countless nights	Parameter	
lots of optics	ions	protons and carbon (2 ion sources); planned: helium, oxygen (3 ion sources)
See poster: M. Galonska, HIT	intensity	2 x 10 ⁶ /s to 8 x 10 ⁷ /s for carbon intensity upgrade in progress 8 x 10 ⁷ /s to 4 x 10 ⁸ /s for protons 10 steps ; maximum extraction time 5 s
	energy	88-430 MeV/u for carbon 50-221 MeV/u for protons 255 steps , 1-1.5 mm spacing, 2-30 cm range in water
	focus	3.5-13 mm FWHM 11-33 mm FWHM 4 steps
Viewing target and camera in black		$2 \times 10 \times 255 \times 4 = 20400$ combinations per vault!!! Gantry-angles at 0.1°-steps => 73.440.000
housing	3/	Heldsborg knenetch#Thoropic Contrum

1st treatment at the HIT's wolrdwide only scanning ion gantry

October 19th, 2012 oligo-astrocytoma

The new PSI Gantry 2

- A tool for developing advanced beam scanning techniques
 - Iso-centric layout
 - Double magnetic scanning (double-parallel)
 - Dynamic beam energy variations with the beam line

• New characteristic

copyright@PSI

- The new PSI gantry rotates only on <u>one side</u> by -30° to 185°
- Flexibility of beam delivery achieved by rotating the patient table in the horizontal plane

Courtesy E. Pedroni, D. Meer, S. Zenklus

Design of Superconducting Gantries

NIRS / HIMAC (J): 200 to, Radius: 5.5 m, L: 13m, 3 T

CEA (F) and IBA (B)): 210 to, Radius: 4m, Length: 13m, $B_{max}(90^{\circ}-Dipole)$: 5.39 T (NbTi) Use of cryocoolers foreseen \rightarrow Long recovery time in case of quenches!

NIRS Version of a s.c. Gantry

After NIRS

Weekly Beam Time Schedule Patient treatment 5-6 days a week

к	W14		01:00 02:00		03:00 04:00						10:00 11:00 11:00 12:00							20:00 21:00		22:00 23:00	23:00 00:00
Montag	H1 H2 6 6 6 QS	Gantry S	SAG und	I HIT/MP)	Experimente	D D	B			AX AX	E	E	MTRA-Syn MTRA-Syn	nposium	Patch					
Dienstag	មា ស្ត្ត H1		SAG		A A	Experiment	D		QA QA		V										
Mittwoch	H1 ត្ត H2	Gantry S	SAG		A A	Experimento	D		QA QA								MedPhys (MedPhys (
Donnersta	H1 57 H2 78 Ga 60 QS	Gantry (SAG und	j hit/mp	A A)	Experimente	D		QA QA												
Freitag	H1 57 H2 18 Ga 8 QS	Gantry S	SAG und	I HIT/MP	A A)	Experimente	D D e		QA QA												
Samstag	H1 167 H2 60 B QS		SAG und	I HIT/MP)		c		QA QA								MedPhys (MedPhys (
Sonntag	H1 H2 Ga QS QS													MedPhys () MedPhys ()							
						08				QA		4									
		 08:00 – 19:00: Patient treatment 19:00 – 06:00: Treatment plan verification, Gantry dev., experiments, accelerator QA 																			

Clinical Trials @ HIT

1	Not yet recruiting	Treatment of Malignant Sinonasal Tumours With Intensity-modulated Radiotherapy (IMRT) and Carbon Ion Boost (C12)
		Conditions: Sinonasal Malignancies:; Adenocarcinoma and Squamous Cell Carcinoma of the Paranasal Sinuses
		Intervention: Radiation: carbon ion boost
2	Recruiting	TPF Followed by Cetuximab and IMRT Plus Carbon Ion Boost for Locally Advanced Head and Neck Tumors
		Condition: Locally Advanced Squamous Cell Carcinoma of the Head and Neck (SCCHN): Oro-, Hypopharyngeal and Laryngeal Cancer
		Intervention: Radiation: carbon ion boost
3	Recruiting	Trial of Proton Versus Carbon Ion Radiation Therapy in Patients With Low and Inter-mediate Grade Chondrosarcoma of the Skull Base
		Condition: Chondrosarcoma Interventions: Radiation: carbon ion therapy; Radiation: proton therapy
		interventions. Radiation: carbon for therapy, Radiation: proton therapy
4	Recruiting	Trial of Proton Versus Carbon Ion Radiation Therapy in Patients With Chordoma of the Skull Base
		Conditions: Chordoma; Tumor; Treatment Interventions: Radiation: Carbon ion; Radiation: Protons
		Interventions. Radiation. Carbon ion, Radiation. Protons
5	Recruiting	CO(Mbined Therapy of Malignant) S(Alivary Gland tu)M(Ours With)I(MRT and) c(Arbon Ions): COSMIC
		Conditions: Malignancy; Salivary Glands; Tumor
		Intervention: Radiation: carbon ion boost
6	Not yet recruiting	Carbon Ion Radiotherapy for Atypical Meningiomas
		Condition: Meningioma
		Intervention: Radiation: Carbon Ion Radiotherapy
7	Not yet recruiting	Carbon Ion Radiotherapy for Recurrent Gliomas
		Condition: Glioma
		Interventions: Radiation: Carbon Ion Radiotherapy; Radiation: Fractionated Stereotactic Radiotherapy (FSRT)
8	Recruiting	Carbon Ion Radiotherapy for Primary Glioblastoma
		Condition: Primary Glioblastoma
		Interventions: Radiation: Carbon Ion Radiotherapy; Radiation: Proton Radiotherapy
9	Not yet recruiting	Adenoid Cystic Carcinoma, Erbitux, and Particle Therapy
		Condition: Adenoid Cystic Carcinoma
		Intervention: Drug: cetuximab weekly
10	Not yet recruiting	Carbon Ion Radiotherapy for Hepatocellular Carcinoma ClinicalTrials.gov
	2	Condition: Hepatocellular Carcinoma A service of the U.S. National Institutes of Health
		Intervention: Radiation: Carbon Ion Radiotherapy

I would like to thank the numerous experts providing the information presented in this talk.

Rasterscan@HIT/H1 Carbon 430 MeV/u

www.hit-heidelberg.com

