Author: Feng, G.
Paper Title Page
TUPWO035 Physical Design of Beam Transport Line of a Compact Terahertz FEL 1952
 
  • H. Zeng, Q.S. Chen, Q. Fu, B. Qin, B. Wu, Y.Q. Xiong
    HUST, Wuhan, People's Republic of China
  • G. Feng, Y.J. Pei
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The single pass, linac-based compact terahertz source at HUST is now in the physical design stage. To match Twiss parameters and dispersion function of the electron beam at the undulator entrance and get smaller beta function in the whole line, several lattices based on the double bending achromat(DBA) structure were discussed and the optimized design is given with beam dynamics results–calculated by MAD and Trace 3D.  
 
WEPWA023 Design of 14 MeV LINAC for THz Source Based FEL 2181
 
  • Y.J. Pei, G. Feng, Y. Hong, G. Huang, D. Jia, K. Jin, C. Li, J. Li, S. Lu, L. Shang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Q.S. Chen, M. Fan, T. Hu, Y.Q. Xiong, H. Zeng
    HUST, Wuhan, People's Republic of China
  • B. Qing, Z.X. Tang, X.L. Wei
    USTC, Hefei, Anhui, People's Republic of China
  • L.G. Shen, F. Zhang
    USTC/PMPI, Hefei, Anhui, People's Republic of China
 
  Abstract THz wave have many special performances, such as it can penetrate deep into many organic materials without the damage associated with ionizing radiation such as X-ray, it can be used to distinguish between materials with varying water content, because THz radiation is absorbed by water. In part researchers lacked reliable sources of THz, so develop new THz sources is important now. So far there were many kind of THz Source, one of them is THz source based a FEL that can produce high power (~kW). This paper will describe the design of a LINAC of 14MeV which is used for FEL to produce THz radiation. The LINAC is mainly composed of a novel EC-ITC RF gun, compensation coil, constant gradient accelerating structure, beam diagnostic system and so on. Main design parameters are as following: Energy 7~15MeV Beam current (macro pulse) 571mA (micro pulse) 30~40° Bunch length 5~7ps Charge per bunch 200~300pC Normalized emittance ≤10mm.mrad Energy spread(rms) ≤0.5%  
 
THPME013 MAGNET SUBSYSTEM OF HLS II 3537
 
  • Q. Luo, N. Chen, G. Feng, N. Hu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by Natural Science Foundation of China 11005106
To improve the performance of the Hefei Light Source (HLS), in particular to get higher brilliance synchrotron radiation and increase the number of straight section insertion devices, NSRL is now upgrading HLS to HLS II. Most of the magnets had to be replaced in this project. To measure the magnets, set of the magnetic measurement equipment in NSRL are also re-built. New magnets are sample measured, the discreteness and uniformity of integrated magnetic field all meet the requirements. Piecewise fitting and electron tracking of bending magnets for injector and beam transport line were performed and the results showed that the electron trajectory fitted the physical design well.