Author: Fartoukh, S.D.
Paper Title Page
MOPWO042 Simulations of Collimation Cleaning Performance with HL-LHC Optics 987
 
  • A. Marsili, R. Bruce, R. De Maria, S.D. Fartoukh, S. Redaelli
    CERN, Geneva, Switzerland
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The upgrade of the LHC from the current set-up to high luminosity performances will provide new challenges for the protection of the machine. The different optics considered might create new needs for collimation, and require new collimation locations. In order to evaluate the cleaning performances of the collimation system, different halo cleaning simulations were performed with the particle tracking code SixTrack. This paper presents the cleaning performance simulation results for the high luminosity Achromatic Telescopic Squeeze optics considered as baseline for the HL-LHC. The new limitations observed and possible solutions are discussed.
 
 
TUPFI001 High Luminosity LHC Matching Section Layout vs Crab Cavity Voltage 1328
 
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Chancé, J. Payet
    CEA/DSM/IRFU, France
  • R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 project HiLumi LHC, GA no. 284404, co-funded by the DoE, USA and KEK, Japan.
In the framework of the HL-LHC Upgrade project we present a new possible variant for the layout of the LHC matching section located in the high luminosity insertions. This layout is optimized to reduce the demand on the voltage of the crab cavities, while substantially improving the optics squeeze-ability, both in ATS [1] and non-ATS mode. These new layout will be described in details together with its performance figures in terms of mechanical acceptance, chromatic properties and optics flexibility. [1] S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
TUPFI014 HLLHCV1.0: HL-LHC Layout and Optics Models for 150 mm Nb3Sn Triplets and Local Crab-cavities 1358
 
  • R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The paper presents the latest layout and optics models for the HL-LHC upgrade project. As an evolution from the previous version SLHCV3.1b, it integrates the new Nb3Sn triplet (140T/m, 150mm) with all the additional magnets needed to be compatible with a β* reach of 15cm and beyond. The collision optics implements the ATS* scheme which is able to provide very low value of β* and at the same time warrants outstanding control of the chromatic aberrations within the strength limits of the existing arc sextupole scheme of the LHC. The optics models include the injection and collision optics for proton and ion operations foreseen for the HL-LHC, with improved squeeze-ability of the existing IR2 and IR8 insertions, and all the corresponding optic transitions. An aperture model and a series of optics matched in thin lenses complete the needs for a large range of dedicated beam dynamic studies (dynamic aperture, beam-beam effects, collimation).
* S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
TUPFI016 Optimization of Triplet Quadrupoles Field Quality for the LHC High Luminosity Lattice at Collision Energy 1364
 
  • Y. Nosochkov, Y. Cai, M.-H. Wang
    SLAC, Menlo Park, California, USA
  • R. De Maria, S.D. Fartoukh, M. Giovannozzi, E. McIntosh
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404; and by the US DOE contract DE-AC02-76SF00515.
For the high luminosity upgrade of the LHC (HL-LHC), the beta functions at two interaction points (IP) will be significantly reduced compared to the nominal LHC lattice. This will result in much higher peak beta functions in the inner triplet (IT) quadrupoles adjacent to these IPs. The consequences are a larger beam size in these quadrupoles, higher IT chromaticity, and stronger effects of the IT field errors on dynamic aperture (DA). The IT chromaticity will be compensated using the Achromatic Telescopic Squeezing scheme*. The increased IT beam size will be accommodated by installing large aperture Nb3Sn superconducting quadrupoles with 150 mm coil diameter. The field error tolerances in these magnets must satisfy the required acceptable DA while being reasonably close to realistically achievable field quality. Evaluation of the IT field errors was performed for the LHC upgrade layout version SLHCV3.01 with IT gradient of 123 T/m and IP collision beta functions of 15 cm in both planes. Dynamic aperture calculations were performed using SixTrack. Details of the optimization of the IT field errors are presented along with corrections to achieve the field quality specifications.
* S. Fartoukh, “An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
TUPFI017 Evaluation of Field Quality for Separation Dipoles and Matching Section Quadrupoles for the LHC High Luminosity Lattice at Collision Energy 1367
 
  • Y. Nosochkov, Y. Cai, M.-H. Wang
    SLAC, Menlo Park, California, USA
  • R. De Maria, S.D. Fartoukh, M. Giovannozzi, E. McIntosh
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404; and by the US DOE contract DE-AC02-76SF00515.
The high luminosity upgrade of the LHC (HL-LHC) lattice requires new larger aperture magnets to be installed in the low-beta interaction regions (IRs). These include Nb3Sn superconducting (SC) triplet quadrupoles, Nb-Ti SC separation dipoles D1 and D2, and SC Q4 quadrupoles. The upgrade significantly reduces the beta functions at these IRs, producing higher beta functions and larger beam size in these magnets, and requiring a larger aperture. The high beta functions also increase the impact of high order field errors in these new magnets on dynamic aperture (DA). Therefore, to maintain an acceptable DA, new specifications for the magnet field quality are required. Since the IR error effects at collision are dominated by the triplets, their field quality has been studied and specified first*. As a next step, the field errors were added to the D1 and D2 dipoles and Q4 quadrupoles while maintaining the triplet errors to specifications. The impact of the errors on DA has been determined in long term tracking simulations using SixTrack. The optimized field error specifications for the D1, D2 and Q4 magnets are presented.
* Y. Nosochkov, Y. Cai, M-H. Wang, S. Fartoukh, M. Giovannozzi, R. de Maria, E. McIntosh, “Optimization of Triplet Field Quality for the LHC High Luminosity Lattice at Collision Energy”, IPAC 2013.
 
 
TUPFI023 Optics Design and Lattice Optimisation for the HL-LHC 1385
 
  • B.J. Holzer, R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • R. Appleby, S. Kelly, M.B. Thomas, L.N.S. Thompson
    UMAN, Manchester, United Kingdom
  • A.V. Bogomyagkov
    BINP SB RAS, Novosibirsk, Russia
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Faus-Golfe, J. Resta
    IFIC, Valencia, Spain
  • K.M. Hock, M. Korostelev, L.N.S. Thompson, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C. Milardi
    INFN/LNF, Frascati (Roma), Italy
  • J. Payet
    CEA/DSM/IRFU, France
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Cap. Spec. Progr, Grant Agreement 284404.
The luminosity upgrade project of the LHC collider at CERN is based on a strong focusing scheme to reach smallest beam sizes at the collision points. Depending on the available magnet technology (Nb3Sn or NbTi) a number of beam optics has been developed to define the specifications for the new super conducting quadrupoles. In the context of the optics matching new issues have been addressed and new concepts have been used: Quadrupole strength flexibility and chromatic corrections have been studied, as well as the influence of quadrupole fringe fields. The lattice has been optimised including the needs of the foreseen crab cavities and the transition between injection and low β optics had to guarantee smooth gradient changes over a wide range of β* values. Tolerances on misalignments and power converter ripple have been re-evaluated. Finally the combination of the quadrupole strengths in the high luminosity matching sections with those in the neighboring sectors is explained, a key concept of the ATS to reach smallest β* values. This paper presents the results obtained within the HiLumi collaboration Task 2.2 and summarises the main parameters of the project.
 
 
TUPFI051 Optics Transition between Injection and Collision Optics for the HL-LHC Upgrade Project 1460
 
  • M. Korostelev, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • M. Korostelev, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
Plans for the luminosity upgrade of the LHC collider at CERN (HL-LHC) are based on implementation of magnets with larger apertures in the interaction regions, together with the ATS [*] technique to reach very low values of the beta function at the collision points. The transition from injection to collision optics will be carried out in two stages, and will involve varying the strengths of the quadrupoles within the straight sections. Solutions for the optics transition have to meet a variety of challenging constraints, including constraints on the phase advances and Twiss parameters throughout the straights involved in the transition, specified minimum and maximum strengths of the quadrupoles, etc. Moreover, to minimize the time taken for the transition, the variation of the quadrupole strengths should be as smooth as possible, especially for the strongest quadrupoles. Avoiding changes of slope as much as possible will also minimize hysteresis effects in the super-conducting matching quadrupoles participating to the process. This paper presents one possible solution for the optics transition, calculated for the HLLHCv1.0 version of the optics and layout of the HL-LHC.
* S. Fartoukh, "An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade", in proceedings of IPAC11, p. 2088.
 
 
WEPEA045 Specifications of the Field Quality at Injection Energy of the New Magnets for the HL-LHC Upgrade Project 2603
 
  • R. De Maria, S.D. Fartoukh, M. Giovannozzi
    CERN, Geneva, Switzerland
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The HL-LHC project relies on new magnet designs and technologies to achieve very small β* values. In particular, Nb3Sn magnets show large allowed multipole imperfections at low current. These field errors may have a non-negligible impact on the dynamic aperture and beam life time in the HL-LHC, also because of the smaller-than-nominal β* values foreseen IR1 and IR5 at injection energy, which aims at decreasing the dynamic range of the squeeze and therefore contributing to optimize the turn around time. The paper describes an analysis of the machine performance based on analytical estimates and tracking simulations with the goal of providing field quality specifications for the new magnets.
 
 
WEPEA047 Dynamic Aperture Performance for Different Collision Optics Scenarios for the LHC Luminosity Upgrade 2609
 
  • M. Giovannozzi, R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • A. Chancé, B. Dalena, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • K.M. Hock, M. Korostelev, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • J. Resta-López
    IFIC, Valencia, Spain
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The ATS[1] optics solution for the HL-LHC offers the possibility of different collision optics, with a β* as small as 10 cm in both transverse planes, or with a β* aspect ratio of up to 4 pushing β* to even smaller value (5cm) in the parallel separation plane while relaxing it (20 cm) in the crossing plane. The latter configuration features two possible options for alternated orientations of the crossing plane in the two high luminosity insertions, both considered in this study. In this paper we study the impact of few selected field imperfection models of the new magnets foreseen for the upgrade through tracking simulations and scaling laws.
[1] S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
WEPEA048 Specification of a System of Correctors for the Triplets and Separation Dipoles of the LHC Upgrade 2612
 
  • M. Giovannozzi, R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The luminosity upgrade of the LHC aims at reducing β* from 55 cm to 15 cm or beyond. This can be achieved by the ATS* scheme and means of new large aperture superconducting triplet (IT) quadrupoles (150 mm), preferably using the Nb3Sn technology in order to keep the gradient reasonably high (140 T/m). The field quality requires careful specification in order to ensure a large enough dynamic aperture. In this context, dedicated corrector magnets are foreseen to provide semi-local corrections of specific multipole components and find the best possible compromise between the demand and what can be realistically achieved by the magnet manufacturer. In this paper the layout and main parameters of the IT corrector package are presented together with the correction strategy. Moreover, the foreseen performance is discussed in detail.
* S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
WEPEA049 Analysis of the Non-linear Fringe Effects of Large Aperture Triplets for the HL LHC Project 2615
 
  • A.V. Bogomyagkov, E.B. Levichev, P.A. Piminov
    BINP SB RAS, Novosibirsk, Russia
  • A. Chancé, B. Dalena, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • R. De Maria, S.D. Fartoukh, M. Giovannozzi
    CERN, Geneva, Switzerland
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The HL-LHC project relies on large aperture quadrupoles which are compatible with the very large beam sizes in the inner triplets resulting from the strong reduction of β*. As a result the beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. The spatial extension of these fringe fields increases as well more or less linearly with the coil aperture, which is an additional motivation to analyse this aspect in detail in the framework of the High Luminosity LHC design study. This paper will quantify this effect both by direct analytical estimates using first order Hamiltonian perturbation theory, and via numerical studies thanks to the dedicated implementation of a fringe field symplectic integrator in SixTrack.