Author: Cerutti, F.
Paper Title Page
MOODB202 Simulations and Measurements of Cleaning with 100 MJ Beams in the LHC 52
 
  • R. Bruce, R.W. Aßmann, V. Boccone, C. Bracco, M. Cauchi, F. Cerutti, D. Deboy, A. Ferrari, L. Lari, A. Marsili, A. Mereghetti, E. Quaranta, S. Redaelli, G. Robert-Demolaize, A. Rossi, B. Salvachua, E. Skordis, G. Valentino, V. Vlachoudis, Th. Weiler, D. Wollmann
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
  • E. Quaranta
    Politecnico/Milano, Milano, Italy
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The CERN Large Hadron Collider is routinely storing proton beam intensities of more than 100 MJ, which puts extraordinary demands on the control of beam losses to avoid quenches of the superconducting magnets. Therefore, a detailed understanding of the LHC beam cleaning is required. We present tracking and shower simulations of the LHC's multi-stage collimation system and compare with measured beam losses, which allow us to conclude on the predictive power of the simulations.  
slides icon Slides MOODB202 [6.343 MB]  
 
MOPFI053 Upgrades of the SPS, Transfer Line and LHC Injection Protection Devices for the HL-LHC Era 401
 
  • Ö. Mete, O. Aberle, F. Cerutti, K. Cornelis, B. Goddard, V. Kain, R. Losito, F.L. Maciariello, M. Meddahi, A. Mereghetti, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  The challenging High Luminosity LHC (HL-LHC) beam requirements will lead in the future to unprecedented beam parameters along the LHC injector chain. In the SPS accelerator these requests translate into about a factor two higher intensity and brightness than the present design performance. In addition to the challenge of producing and accelerating such beams, these parameters affect the resistance of the existing equipment against beam impact. Most of the protection devices in the SPS ring, its transfer lines and the LHC injection areas will be put under operational constraints which are beyond their design specification. The equipment concerned has been reviewed and their resistance to the HL-LHC beams checked. Theoretical and simulation studies have been performed for the SPS beam scraping system, the protection devices and the dump absorbers of the SPS-to-LHC transfer lines, as well as for the LHC injection protection devices. The first results of these studies are reported, together with the future prospects.  
 
MOPWO034 Energy Deposition Studies for the Upgrade of the LHC Injection Lines 963
 
  • A. Mereghetti, O. Aberle, F. Cerutti, B. Goddard, V. Kain, F.L. Maciariello, M. Meddahi
    CERN, Geneva, Switzerland
  • R. Appleby
    UMAN, Manchester, United Kingdom
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  The LHC Injectors Upgrade (LIU) Project aims at upgrading the systems in the LHC injection chain, to reliably deliver the beams required by the High-Luminosity LHC (HL-LHC). Given the challenging beam intensities and emittances, a review of the existing beam-intercepting devices is on-going, in order to assess heat loads and consequent thermo-mechanical stresses. Moreover, the exposure of downstream elements to induced shower radiation is assessed. The study is intended to spot possible issues and contribute to the definition of viable design and layout solutions.  
 
MOPWO041 Simulations and Measurements of Physics Debris Losses at the 4 TeV LHC 984
 
  • A. Marsili, R. Bruce, F. Cerutti, S. Redaelli
    CERN, Geneva, Switzerland
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
Simulations of energy deposition from the physics debris are normally done with shower simulation tools like FLUKA. Tracking tools like SixTrack allow faster simulations that open the possibility to study parametrically and optimize different layouts. In this paper, the results of FLUKA and SixTrack simulations are compared to beam measurements done for different collimator settings at 4 TeV, with p-p luminosities up to 7·1033 cm-2s−1.
 
 
MOPWO047 Studies of Thermal Loads on Collimators for HL-LHC Optics in case of Fast Losses 999
 
  • L. Lari, R. Bruce, F. Cerutti
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The new layouts for the HL-LHC pose new challenges in terms of proton loads on the collimators around the ring, in particular for the ones of in experimental regions that become critical with squeeze optics. New layouts are under consideration, which foresee updated collimation schemes. Simulations of halo loads for in case of fast failures have been setup with SixTrack in order to determine beam loss distributions for realistic error scenarios. The particle tracking studies might then be interfaced to tools like FLUKA to evaluate the thermal loads on collimators in case of failures. In this paper, the preliminary studies performed for the baseline HL-LHC optics layouts are presented.
 
 
MOPWO051 Estimate of Warm Magnets Lifetime in the Betatron and Momentum Cleaning Insertions of the LHC 1011
 
  • B. Salvachua, R. Bruce, M. Brugger, F. Cerutti, S. Redaelli
    CERN, Geneva, Switzerland
 
  The CERN LHC collimation system is designed to perform momentum and betatron cleaning in different insertions, respectively IR3 and IR7. The insertions are not perfectly decoupled because the dispersion in IR7 is not null and the beta function in IR3 is not zero. The detailed sharing of losses between the two insertions depends on the relative collimator settings as observed by the change between 2011 and 2012 LHC operation. In this report, using the beam loss measurements at the primary collimators of IR3 and IR7, the total BLM losses in the two insertions are calculated and compared to each other. These studies are also used to quantify the total dose to warm magnets in those IRs with the aim to understand better their lifetime and the implications of the radiation to electronics. This will be of particular importance in view of LHC operating at nominal performance after several years of operation.  
 
TUPFI021 FLUKA Energy Deposition Studies for the HL-LHC 1379
 
  • L.S. Esposito, F. Cerutti, E. Todesco
    CERN, Geneva, Switzerland
 
  The LHC upgrade, planned in about ten years from now, is envisaged to accumulate up to 3000 fb-1 integrated luminosity by running at a peak luminosity of 5 x 1034 cm-2 s−1*. In order to reach such an ambitious goal, the high luminosity insertions need a major redesign implying a 150 mm aperture low-beta Inner Triplet, a superconducting D1 and new quadrupoles in the Matching Section. Energy deposition studies show that degradation of the coil insulator represents the most challenging issue from the radiation impact point of view. We propose a suitable shielding consisting of a beam screen with several mm tungsten absorbers at mid-planes to guarantee not to exceed a few ten MGys. This will also allow a good margin with respect to the risk of radiation induced quenches.
O. Brüning, L. Rossi, "High Luminosity Large Hadron Collider: A description for the European Strategy Preparatory Group," CERN ATS 2012-236.
 
 
TUPFI022 Power Load from Collision Debris on the LHC Point 8 Insertion Magnets Implied by the LHCb Luminosity Increase 1382
 
  • L.S. Esposito, F. Cerutti, A. Lechner, A. Mereghetti, A.A. Patapenka, V. Vlachoudis
    CERN, Geneva, Switzerland
  • A. Mereghetti
    UMAN, Manchester, United Kingdom
  • A.A. Patapenka
    JIPNR-Sosny NASB, Minsk, Belarus
 
  LHCb is aiming to upgrade its goal peak luminosity up to a value of 2 1033 cm-2 s−1 after LS2. We investigate the collision debris impact on the machine elements by extensive FLUKA simulations, showing that the present machine layout is substantially compatible with such a luminosity goal. In particular the installation of a TAS (Target Absorber ofSecondaries, installed in front of the final focus Q1-Q3 quadrupole triplet in the LHC high luminosity insertions) turns out not to be necessary on the basis of the expected peak power deposition in the Q1 superconducting coils. A warm protection may be desirable to further reduce heat load and dose on the D2 recombination dipole, due to the absence of the TAN (Target Absorber of Neutrals, present in Point 1 and 5).  
 
TUPFI027 Energy Deposition Studies for Fast Losses during LHC Injection Failures 1397
 
  • A. Lechner, A. Alnuaimi, C. Bracco, F. Cerutti, A. Christov, L.S. Esposito, N.V. Shetty, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Several instances of injection kicker magnet (MKI) failures have occurred in the first years of LHC operation, leading to misinjections or to accidental kicks of circulating bunches. In a few cases, MKI modules imparted a partial or an increased beam deflection, resulting in grazing bunch impact on beam-intercepting devices and consequently leading to significant secondary showers to downstream accelerator elements. In this study, we investigate different failure occurrences where miskicked bunches were incident on the injection beam stopper (TDI) and on one of the auxiliary injection collimators (TCLIB), respectively. FLUKA shower calculations were performed to quantify the energy deposition in superconducting magnets. Different sections of the LHC insertion regions 2 and 8 were studied, including the separation dipole and the inner triplet downstream of the TDI as well as matching section and dispersion suppressor adjacent to the TCLIB. The obtained results are evaluated in view of quench and damage limits.  
 
WEPEA064 SixTrack-Fluka Active Coupling for the Upgrade of the SPS Scrapers 2657
 
  • A. Mereghetti, F. Cerutti, R. De Maria, B. Goddard, V. Kain, M. Meddahi, Ö. Mete, Y. Papaphilippou, D. Pastor Sinuela, V. Vlachoudis
    CERN, Geneva, Switzerland
  • R. Appleby
    UMAN, Manchester, United Kingdom
 
  The LHC Injectors Upgrade (LIU) Project aims at upgrading the systems in the LHC injection chain, to reliably deliver the beams required by the High-Luminosity LHC (HL-LHC). Essential for the clean injection into the LHC, the SPS scrapers are one of the important systems under revision. In order to take into account of the effect of betatron and longitudinal beam dynamics on energy deposition patterns, and nuclear and Coulomb scattering in the absorbing medium onto loss patterns, the SixTrack and Fluka codes have been coupled, profiting from the best of the refined physical models they respectively embed. The coupling envisages an active exchange of tracked particles between the two codes at each turn, and an on-line aperture check in SixTrack, in order to estimate the local cleaning inefficiency of the system. Knob-like, time-dependent strengths have been implemented in SixTrack, since the designed scraper system foresees the use of a magnetic bump. The study is intended to assess the robustness of the proposed scraper as well as its effectiveness with respect to the desired performance.  
 
THPEA040 Design of a Magnetic Bump Tail Scraping System for the CERN SPS 3228
 
  • Ö. Mete, J. Bauche, F. Cerutti, S. Cettour Cave, K. Cornelis, L.N. Drøsdal, F. Galleazzi, B. Goddard, L.K. Jensen, V. Kain, Y. Le Borgne, G. Le Godec, M. Meddahi, E. Veyrunes, H. Vincke, J. Wenninger
    CERN, Geneva, Switzerland
  • A. Mereghetti
    UMAN, Manchester, United Kingdom
 
  The LHC injectors are being upgraded to meet the demanding beam specification required for High Luminosity LHC (HL-LHC) operation. In order to reduce the beam losses which can trigger the sensitive LHC beam loss interlocks during the SPS-to-LHC beam injection process, it is important that the beam tails are properly scraped away in the SPS. The current SPS tail cleaning system relies on a moveable scraper blade, with the positioning of the scraper adjusted over time according to the orbit variations of the SPS. A new robust beam tail cleaning system has been designed which will use a fixed scraper block towards which the beam will be moved by a local magnetic orbit bump. The design proposal is presented, together with the related beam dynamics studies and results from machine studies with beam.  
 
THPFI046 First Results of an Experiment on Advanced Collimator Materials at CERN HiRadMat Facility 3391
 
  • A. Bertarelli, O. Aberle, R.W. Aßmann, E. Berthomé, V. Boccone, M. Calderón Cueva, F. Carra, F. Cerutti, N. Charitonidis, C. Charrondière, A. Dallocchio, M. Donzé, P. Francon, M. Garlaschè, L. Gentini, M. Guinchard, N. Mariani, A. Masi, P. Moyret, S. Redaelli, A. Rossi, S.D.M. dos Santos
    CERN, Geneva, Switzerland
  • M. Calderón Cueva
    Universidad San Francisco de Quito, Cumbayá, Colombia
  • N. Charitonidis
    EPFL, Lausanne, Switzerland
  • L. Peroni, M. Scapin
    Politecnico di Torino, Torino, Italy
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579
A comprehensive, first-of-its-kind experiment (HRMT-14) has been recently carried out at CERN HiRadMat facility on six different materials of interest for Beam Intercepting Devices (collimators, targets, dumps). Both traditional materials (Mo, W and Cu alloys) as well as advanced metal/diamond and metal/graphite composites were tested under extreme conditions as to pressure, density and temperature, leading to the development of highly dynamic phenomena as shock-waves, spallation, explosions. Experimental data were acquired, mostly in real time, relying on extensive embarked instrumentation (strain gauges, temperature and vacuum sensors) and on remote acquisition devices (laser Doppler vibrometer and high speed camera). The experiment was a success under all points of view in spite of the technological challenges and harsh environment. First measurements are in good agreement with results of complex simulations, confirming the effectiveness of the acquisition system and the reliability of advanced numerical methods when material constitutive models are completely available. Interesting information has been collected as to thermal shock robustness of tested materials.
 
 
THPFI054 Preliminary Comparison of the Response of LHC Tertiary Collimators to Proton and Ion Beam Impacts 3412
 
  • M. Cauchi, R.W. Aßmann, A. Bertarelli, F. Carra, F. Cerutti, L. Lari
    CERN, Geneva, Switzerland
  • M. Cauchi, P. Mollicone
    UoM, Msida, Malta
  • L. Lari
    IFIC, Valencia, Spain
  • N.J. Sammut
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The CERN Large Hadron Collider is designed to bring into collision protons as well as heavy ions. Accidents involving impacts on collimators can happen for both species. The interaction of lead ions with matter differs to that of protons, thus making this scenario a new interesting case to study as it can result in different damage aspects on the collimator. This paper will present a preliminary comparison of the response of collimators to proton and ion beam impacts.