Author: Carneiro, J.-P.
Paper Title Page
TUPWA054 PXIE End-to-end Simulations 1829
 
  • J.-F. Ostiguy, J.-P. Carneiro, V.A. Lebedev, A. Saini, N. Solyak
    Fermilab, Batavia, USA
 
  Funding: US DOE contract DE-AC02-76CH03000.
Construction of PXIE, (Project-X Injector Experiment) has recently begun. The goal is to validate the design of the injector and low energy acceleration front-end for a future Project-X. PXIE operates in CW mode and consists in an ion source, a magnetically focused LEBT, a 162.5 MHz RFQ, a MEBT equipped with high bandwidth traveling wave kickers, a cryomodule equipped with 162.5 MHz half-wave resonators and a single cryomodule based on 325 MHz spoke resonators. The arrangement is meant to be closely representative of a future Project-X front end, and will include a variety of diagnostics. In this contribution we present detailed end-to-end tracking simulations. In particular, we examine possible impact of the RFQ longitudinal distribution, neutralization effects in the LEBT as well as of various imperfections in the MEBT on losses in the first superconducting cavities.
 
 
THPWO091 Staging Scenarios for Project-X 3972
 
  • N. Solyak, J.-P. Carneiro, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy, A. Saini, A. Vivoli, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: US DOE under contract DE-AC02-76CH03000.
Project-X is a high intensity proton source in development at Fermilab. At its heart is a linac based on superconducting technology comprising two distinct sections. The first one operates in CW mode and delivers beam with a flexible time structure to simultaneous experimental programs at 1 and 3 GeV. The second one operates in pulsed mode and accelerates a modest fraction (5%) of the beam from 3 GeV to 8 GeV for accumulation in the existing Main Injector complex. In an era of constrained budgets, construction in stages -with each stage capable of supporting worthy scientific programs - may be advantageous. Requirements for each program, coupled to the physical constraints imposed by the Fermilab site have led to a few possible scenarios, which are discussed in this contribution. In particular, we examine the implications of introducing bends in the linac at 1 and 3 GeV in terms of overall performance, flexibility and cost.