Author: Calaga, R.
Paper Title Page
MOPWO010 Machine Protection Studies for a Crab Cavity in the LHC 906
 
  • B. Yee-Rendon, R. Lopez-Fernandez
    CINVESTAV, Mexico City, Mexico
  • T. Baer, J. Barranco, R. Calaga, A. Marsili, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
 
  Funding: US-LARP and CONACYT
Crab cavities (CCs) apply a transverse kick that rotate the bunches so as to have a head-on collision at the interaction point (IP). Such cavities were successfully used to improve the luminosity of KEKB. They are also a key ingredient of the HL-LHC project to increase the luminosity of the LHC. As CCs can rapidly change the particle trajectories, machine protection studies are required to assess the beam losses due to fast CC failures. In this paper, we discuss the effect of rapid voltage or phase changes in a CC for the HL-LHC layout using measured beam distributions from the present LHC.
 
 
MOPWO028 Recent Developments and Future Plans for SixTrack 948
 
  • R. De Maria, R. Bruce, R. Calaga, L. Deniau, M. Fjellstrom, M. Giovannozzi, L. Lari, Y.I. Levinsen, E. McIntosh, A. Mereghetti, D. Pastor Sinuela, S. Redaelli, H. Renshall, A. Rossi, F. Schmidt, R. Tomás, V. Vlachoudis
    CERN, Geneva, Switzerland
  • R. Appleby, D.R. Brett
    UMAN, Manchester, United Kingdom
  • D. Banfi, J. Barranco
    EPFL, Lausanne, Switzerland
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • L. Lari
    IFIC, Valencia, Spain
  • V. Previtali
    Fermilab, Batavia, USA
  • G. Robert-Demolaize
    BNL, Upton, Long Island, New York, USA
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
SixTrack is a symplectic 6D tracking code routinely used to simulate single particle trajectories in high energy circular machines like the LHC and RHIC. The paper presents the developments recently implemented and those foreseen for extending the physics models: exact Hamiltonian, different ions and charge states, RF multipoles, non-linear fringe fields, Taylor maps, e-lenses, ion scattering. Moreover new functionalities are also added like variable number of tracked particles, time dependent strengths, GPU computations with a refactoring of the core structure. The developments will benefit studies on the LHC and SPS, for collimation efficiency, ion operations, failure scenarios and HL-LHC design.
 
 
TUPME055 Strawman Optics Design for the CERN LHeC ERL Test Facility 1694
 
  • A. Valloni, O.S. Brüning, R. Calaga, E. Jensen, M. Klein, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • S.A. Bogacz, D. Douglas
    JLAB, Newport News, Virginia, USA
 
  In preparation for a future Large Hadron electron Collider (LHeC) at CERN, an ERL test facility is foreseen as a test bed for SRF development, cryogenics, and advanced beam instrumentation, as well as for studies of ERL-specific beam dynamics. The CERN ERL test facility would comprise two linacs, each consisting of 4 superconducting 5-cell cavities at 802 MHz, and two return arcs on either side. With an RF voltage of 75 MeV per linac a final electron energy of about 300 MeV is reached. The average beam current should be above 6 mA to explore the parameter range of the future LHeC. In this paper we present a preliminary optics layout.  
 
TUPME060 Tune Studies with Beam-Beam Effects in LHC 1703
 
  • S. Paret, J. Qiang
    LBNL, Berkeley, California, USA
  • R. Alemany-Fernandez, X. Buffat, R. Calaga, K. Cornelis, M. Fitterer, R. Giachino, W. Herr, A. Macpherson, G. Papotti, T. Pieloni, S. Redaelli, F. Roncarolo, M. Schaumann, R. Suykerbuyk, G. Trad
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
 
  Funding: This work was partially supported by the U.S. LARP and the NERSC of the U.S. Department of Energy under contract No. DE-AC02-05CH11231.
In high brightness colliders, the tune spread due to the collisions has a significant impact on the quality of the beams. The impact of the working point on emittance growth and beam lifetime has been observed in beam experiments in LHC. Strong-strong beam-beam simulations that were accomplished to better understand such observations are shown. Compared to experiments, wide ranged parameter scans can be done easily. Tune footprints and scans of the emittance growth obtained from simulations are discussed. Three cases are considered: Very high intensity, moderate intensity and collisions with separated beams.
 
 
WEPWO045 RF Multipolar Characterization of the Latest LHC Deflecting Cavities 2402
 
  • M. Navarro-Tapia, R. Calaga, A. Grudiev
    CERN, Geneva, Switzerland
 
  Funding: The HiLumi LHC Design Study (a sub-system of HL-LHC) is cofunded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
Deflecting cavity geometries considered for the Large Hadron Collider (LHC)crab scheme lack axial symmetry resulting in non-zero higher-order components of the deflecting field. A formalism to express the higher-order multipoles was developed and applied on previous cavity designs to characterize their influence on the beam stability. In this paper, the radio frequency (RF) multipoles are numerically estimated for the latest cavity geometries and compared to the older versions. A sensitivity study is carried to understand the numerical error levels and define mechanical tolerances.
 
 
WEPWO046 First Test Results of the 4-rod Crab Cavity 2405
 
  • R. Calaga, L.S. Alberty Vieira, S. Calatroni, O. Capatina, E. Ciapala, L.M.A. Ferreira, E. Jensen, P. Maesen, A. Mongelluzzo, T. Renaglia, M. Therasse
    CERN, Geneva, Switzerland
  • P.K. Ambattu, D. Doherty, B.D.S. Hall, C. Lingwood
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
 
  Funding: The HiLumi LHC Design Study (a sub-system of HL-LHC) is cofunded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The first prototype crab cavity with the 4-rod geometry has undergone surface treatment and cold testing. Due to the complex geometry and unique fabrication procedure, RF validation of the field at beyond the nominal operating voltage at a sufficiently high Q0 is an important pre-requiste. Preliminary results of the first cold tests are presented along with cavity performance at different stages of the cavity processing is described.
 
 
WEPWO047 A Double Quarter-Wave Deflecting Cavity for the LHC 2408
 
  • R. Calaga
    CERN, Geneva, Switzerland
  • S.A. Belomestnykh, I. Ben-Zvi, J. Skaritka, Q. Wu, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  Funding: The HiLumi LHC Design Study (a sub-system of HL-LHC) is cofunded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404
An asymmetric quarter wave deflecting cavity at 400 MHz for crab crossing in the LHC was already proposed in 2011. Due to improved cancellation of on-axis longitudinal field and the higher order components of the deflecting field, a symmetric version is now considered as the baseline for the quarter wave geometry. Relevant RF properties of the symmetric cavity are compared to the original asymmetric cavity. Some aspects of input coupler design, higher order modes, multipacting and frequency tuning are also addressed.
 
 
WEPWO048 Investigation of a Ridge-loaded Waveguide Structure for CLIC X-band Crab Cavity 2411
 
  • V.F. Khan, R. Calaga, A. Grudiev
    CERN, Geneva, Switzerland
 
  In conventional crab cavities the TM11 mode is used to deflect the beam. In a linear collider such as CLIC, it is necessary to damp all the other modes, namely the accelerating i.e. lower order mode (LOM), same order mode (SOM) and higher order modes (HOMs). In addition to this, as the TM11 mode is not the fundamental mode, it is generally not excited with the highest shunt impedance. This necessitates damping of the high shunt impedance modes to acceptable level. Here we report on the investigation of an alternative design of the X-band crab cavity for CLIC based on ridge-loaded waveguide. In this type of cavity, the deflecting mode is the fundamental mode and has the maximum shunt impedance. However, the geometry of the cavity is chosen to optimise the ratio of group velocity to shunt impedance to minimise the effect of beam loading. The other modes are excited above the crabbing mode and are damped using wave-guides. Another advantage of this type of cavity is, unlike the conventional TM11 mode cavities, the e.m. surface fields do not peak at the iris. This provides ample margin to optimise the cavity geometry and reach the desired field distribution.  
 
WEPWO049 A Proposal for an ERL Test Facility at CERN 2414
 
  • R. Calaga, E. Jensen
    CERN, Geneva, Switzerland
 
  An energy recovery linac at 300-400 MeV is proposed as a test facility using a two-pass two-cryomodule concept as a proof of principle for a future ERL based electron-ion collider. This facility will enable both the development and validation of the required SRF technology performance and ERL specific beam dynamics essential for the future collider. Furthermore, the test facility can be used as the injector to the main linac in future. The test facility proposal, its potential uses and some aspects of the RF system are presented.  
 
WEPWO050 Mechanical Study of 400 MHz Double Quarter Wave Crab Cavity for LHC Luminosity Upgrade 2417
 
  • B. P. Xiao, S.A. Belomestnykh, I. Ben-Zvi, J. Skaritka, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • L. Alberty Vieira, R. Calaga
    CERN, Geneva, Switzerland
  • T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
 
  A prototype double quarter wave crab cavity was designed for the Large Hadron Collider luminosity upgrade. A finite element model is used to simulate the mechanical properties of the crab cavity. The results are presented and a reinforcement concept is proposed to meet the safety requirements. The reinforcement components, as well as the cavity, are presently being fabricated at Niowave Inc.  
 
WEPWO051 Manufacture of a Compact Prototype 4R Crab Cavity for HL-LHC 2420
 
  • G. Burt, B.D.S. Hall, C. Lingwood
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • L. Alberty Vieira, R. Calaga, O. Capatina
    CERN, Geneva, Switzerland
  • C.H. Boulware, D. Gorelov, T.L. Grimm, C. Krizmanich, T.S. Lamie
    Niowave, Inc., Lansing, Michigan, USA
  • C. Hill, P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R.A. Rimmer, H. Wang
    JLAB, Newport News, Virginia, USA
 
  Funding: This work has been funded by the EU through EUCARD and HiLumi and by STFC via the Cockcroft Institute.
A prototype compact SRF deflecting cavity has been manufactured for LHC. The base of the cavity has been machined out of large grain niobium ingot to allow the manufacture of the complex rod profile. Stiffening rods have been used to increase the mechanical strength of the outer can. Details of the cavity design and manufacture will be discussed.
 
 
WEPEA071 Performance Limitations in the Lhc Due to Parasitic Beam-Beam Encounters - Parameter Dependence, Scaling, and Pacman Effects 2672
 
  • T. Pieloni
    EPFL, Lausanne, Switzerland
  • X. Buffat, R. Calaga, R. Calaga, R. Giachino, W. Herr, E. Métral, G. Papotti, G. Trad
    CERN, Geneva, Switzerland
  • D. Kaltchev
    TRIUMF, Vancouver, Canada
 
  We studied possible limitations due to the long-range beam-beam effects in the LHC. With a large number of bunches and collisions in all interaction points, we have reduced the crossing angles (separation) to enhance long-range beam-beam effects to evaluate their influence on dynamic aperture and losses. Different β*, number of bunches and intensities have been used in several dedicated experiments and allow the test of the expected scaling laws.  
 
WEPEA071 Performance Limitations in the Lhc Due to Parasitic Beam-Beam Encounters - Parameter Dependence, Scaling, and Pacman Effects 2672
 
  • T. Pieloni
    EPFL, Lausanne, Switzerland
  • X. Buffat, R. Calaga, R. Calaga, R. Giachino, W. Herr, E. Métral, G. Papotti, G. Trad
    CERN, Geneva, Switzerland
  • D. Kaltchev
    TRIUMF, Vancouver, Canada
 
  We studied possible limitations due to the long-range beam-beam effects in the LHC. With a large number of bunches and collisions in all interaction points, we have reduced the crossing angles (separation) to enhance long-range beam-beam effects to evaluate their influence on dynamic aperture and losses. Different β*, number of bunches and intensities have been used in several dedicated experiments and allow the test of the expected scaling laws.  
 
THOBB102 Beam Coupling Impedance Localization Technique Validation and Measurements in the CERN Machines 3106
 
  • N. Biancacci, G. Arduini, T. Argyropoulos, H. Bartosik, R. Calaga, K. Cornelis, S.S. Gilardoni, N. Mounet, E. Métral, Y. Papaphilippou, S. Persichelli, G. Rumolo, B. Salvant, G. Sterbini, R. Tomás, R. Wasef
    CERN, Geneva, Switzerland
  • M. Migliorati, L. Palumbo
    URLS, Rome, Italy
 
  The beam coupling impedance could lead to limitations in beam brightness and quality, and therefore it needs accurate quantification and continuous monitoring in order to detect and mitigate high impedance sources. In the CERN machines, for example, kickers and collimators are expected to be the main contributors to the total imaginary part of the transverse impedance. In order to detect the other sources, a beam based measurement was developed: from the variation of betatron phase beating with intensity, it is possible to detect the locations of main impedance sources. In this work we present the application of the method with beam measurements in the CERN PS, SPS and LHC.  
slides icon Slides THOBB102 [7.224 MB]  
 
THPWO076 Design Study for 10 MHz Beam Frequency of Post-accelerated RIBs at HIE-ISOLDE 3933
 
  • M.A. Fraser, R. Calaga, I.-B. Magdau
    CERN, Geneva, Switzerland
 
  An increased bunch spacing of approximately 100 ns is requested by several research groups targeting experimental physics at HIE-ISOLDE. A design study testing the feasibility of retrofitting the existing 101.28 MHz REX (Radioactive ion beam EXperiment) RFQ with a sub-harmonic external pre-buncher at the ISOLDE radioactive nuclear beam facility has been carried out as a means of decreasing the beam frequency by a factor of 10. The proposed scheme for the 10 MHz bunch repetition frequency is presented and its performance assessed with beam dynamics simulations. The opportunity to reduce the longitudinal emittance formed in the RFQ is discussed along with the options for chopping the satellite bunches populated in the bunching process.