Author: Ben-Zvi, I.
Paper Title Page
MOPFI080 Fabrication, Transport and Characterization of Cesium Potassium Antimonide Cathode in Electron Guns 461
 
  • T. Rao, S.A. Belomestnykh, I. Ben-Zvi, X. Liang, I. Pinayev, B. Sheehy, J. Skaritka, J. Smedley, E. Wang, T. Xin
    BNL, Upton, Long Island, New York, USA
  • R.R. Mammei, J.L. McCarter, M. Poelker
    JLAB, Newport News, Virginia, USA
  • M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
 
  a number of accelerator applications need high current, low emittance and high brightness electron beams. Recent studies have shown cesium potassium antimonide to be a robust photocathode capable of producing high peak and average currents. However, for some applications, the UHV conditions required for producing these cathodes necessitate their fabrication site to be physically removed from the gun location and the cathode to be transferred between the two sites in UHV load-lock chambers. We have fabricated two cathodes at BNL, transported and tested them in DC gun at JLab at 100 kV and 200 kV. These cathodes have delivered up to 8A/cm2 without significant degradation. Localized changes in the QE have been attributed to heating due to laser, increasing the QE at lower laser power, but damaging the cathode at higher power. Two more load-lock chambers have been built to transport and insert similar cathodes in SRF guns operating at 700 MHz and 112 MHz for the first time. In this paper, we will describe the design of the load-lock chambers, transfer mechanisms, transport of the cathodes over ~ 1000 km and the cathode performance in gun environment.  
 
TUPFI081 Progress with Coherent Electron Cooling Proof-Of-Principle Experiment 1535
 
  • I. Pinayev, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, L. DeSanto, A. Elizarov, C. Folz, D.M. Gassner, Y. Hao, R.L. Hulsart, Y.C. Jing, D. Kayran, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, W. Meng, R.J. Michnoff, T.A. Miller, M.G. Minty, P. Orfin, A. Pendzick, F. Randazzo, T. Rao, T. Roser, J. Sandberg, B. Sheehy, J. Skaritka, K.S. Smith, L. Snydstrup, R. Than, R.J. Todd, J.E. Tuozzolo, G. Wang, D. Weiss, M. Wilinski, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, J.R. Cary, K. Paul, B.T. Schwartz, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • C.H. Boulware, T.L. Grimm, R. Jecks, N. Miller
    Niowave, Inc., Lansing, Michigan, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • M. Poelker
    JLAB, Newport News, Virginia, USA
 
  We conduct proof-of-the-principle experiment of coherent electron cooling (CEC), which has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. In this paper, we present the progress with experimental equipment including the first tests of the electron gun and the magnetic measurements of the wiggler prototype. We describe current design status as well as near future plans.  
 
WEPWO047 A Double Quarter-Wave Deflecting Cavity for the LHC 2408
 
  • R. Calaga
    CERN, Geneva, Switzerland
  • S.A. Belomestnykh, I. Ben-Zvi, J. Skaritka, Q. Wu, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  Funding: The HiLumi LHC Design Study (a sub-system of HL-LHC) is cofunded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404
An asymmetric quarter wave deflecting cavity at 400 MHz for crab crossing in the LHC was already proposed in 2011. Due to improved cancellation of on-axis longitudinal field and the higher order components of the deflecting field, a symmetric version is now considered as the baseline for the quarter wave geometry. Relevant RF properties of the symmetric cavity are compared to the original asymmetric cavity. Some aspects of input coupler design, higher order modes, multipacting and frequency tuning are also addressed.
 
 
WEPWO050 Mechanical Study of 400 MHz Double Quarter Wave Crab Cavity for LHC Luminosity Upgrade 2417
 
  • B. P. Xiao, S.A. Belomestnykh, I. Ben-Zvi, J. Skaritka, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • L. Alberty Vieira, R. Calaga
    CERN, Geneva, Switzerland
  • T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
 
  A prototype double quarter wave crab cavity was designed for the Large Hadron Collider luminosity upgrade. A finite element model is used to simulate the mechanical properties of the crab cavity. The results are presented and a reinforcement concept is proposed to meet the safety requirements. The reinforcement components, as well as the cavity, are presently being fabricated at Niowave Inc.  
 
WEPWO084 Improvement of the Q-factor Measurement in RF Cavities 2489
 
  • W. Xu, S.A. Belomestnykh, I. Ben-Zvi, H. Hahn
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S.
The Q values of Higher-order-modes (HOMs) in RF cavities are measured at room temperature with the 3 dB bandwidth reading by a network analyzer. The resonant curve distortion is created by the resonance splitting due to the ellipticity caused by manufacture tolerance and RF ports. Therefore, the measured Q values are usually lower than the simulated or theoretical Q values. In some cases, even only one mode’s Q can be measured with the 3 dB method. There may be two reasons for this happening. One is that only one mode was excited and the neighbor splitmode was close to 90° polarized; the other reason is that the resonant curve of one mode was distorted by the other mode too much to measure the 3dB range. In this paper, we resolve this issue by looking into the RF measurement setup, including cavity, input coupler and pick-up coupler, from the equivalent circuit and wave point of view. Based on the BNL3 copper prototype cavity, we compared these results from measurement and simulation.
 
 
WEPWO085 Commissioning SRF Gun for the R&D ERL at BNL 2492
 
  • W. Xu, Z. Altinbas, S.A. Belomestnykh, I. Ben-Zvi, S. Deonarine, D.M. Gassner, H. Hahn, J.P. Jamilkowski, P. Kankiya, D. Kayran, N. Laloudakis, L. Masi, G.T. McIntyre, D. Pate, D. Phillips, T. Seda, K.S. Smith, A.N. Steszyn, T.N. Tallerico, R. Than, R.J. Todd, D. Weiss, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, J. Dai
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S.
The R&D ERL project at BNL aims to demonstrate a high charge, high current energy recovery linac. One of the key SRF system is the 704 MHz half-cell SRF gun. The SRF gun is designed to deliver up to 0.5 A beam at 2 MeV with 1 MW of CW RF power. The gun commissioning started in November 2012. The first photoemission beam from the SRF gun is expected in early 2013. This presentation will discuss the results of the SRF gun commissioning, and the performance of the high-power RF system.
 
 
MOPFI005 XPS and UHV-AFM Analysis of the K2CsSb Photocathodes Growth 291
 
  • S.G. Schubert
    HZB, Berlin, Germany
  • I. Ben-Zvi, M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
  • X. Liang
    SBU, Stony Brook, New York, USA
  • H.A. Padmore, T. Vecchione
    LBNL, Berkeley, California, USA
  • T. Rao, J. Smedley
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is funded by the Department of Energy, under Contract No. KC0407-ALSJNT-I0013, DE-SC0005713, the Bundesministerium für Bildung und Forschung (BMBF) and the state of Berlin, Germany.
Next generation light sources, based on Energy Recovery Linac and Free Electron Laser technology will rely on photoinjector based electron sources. Successful operation of such sources requires reliable photocathodes with long operational life, uniform and high quantum efficiency, low thermal emittance and low dark current. The goal of this project is to construct a cathode which meets these requirements. Advances in photocathode research must take a combined effort. The materials have to be analyzed by means of chemical composition, surface structure and these findings have to be correlated to the quantum efficiency and performance in the injector. The presented work focuses on the chemical composition and surface structure of K2CsSb photocathodes. The XPS and AFM measurements were performed at the Center of Functional Nanomaterials at BNL. K2CsSb photocathodes were grown under UHV conditions. The components were adsorbed one at a time and after each growth step the corresponding XPS spectra was taken. During growth the quantum efficiency was recorded. As last step the sample was moved into the AFM without exposure to air to determine the surface roughness.
 
 
MOPFI081 Correlating Structure and Function - In situ X-ray Analysis of High QE Alkali-antimonide Photocathodes 464
 
  • J. Smedley, K. Attenkofer, S.G. Schubert
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi, X. Liang, E.M. Muller, M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
  • T. Forrest, H.A. Padmore, T. Vecchione, J.J. Wong
    LBNL, Berkeley, California, USA
  • J. Xie
    ANL, Argonne, USA
 
  Funding: The authors wish to acknowledge the support of the US DOE, under Contract No. KC0407-ALSJNT-I0013, DE-AC02-98CH10886 and DE-SC0005713. Use of CHESS is supported by NSF award DMR-0936384.
Alkali antimonide photocathodes have high quantum efficiency and low emittance when illuminated by visible light, and are thought to be well suited for use in high-brightness photoinjectors of 4th generation light sources. Here we report on the growth of multi-alkali K2CsSb cathodes on [100] silicon substrates measured using in-situ X-ray diffraction (XRD) and X-ray reflection (XRR). Correlations between cathode structure and growth parameters and the resulting quantum efficiency (QE) are also explored. The best cathodes have a QE at 532 nm in excess of 6% and are structurally textured K2CsSb with grain sizes in excess of 20 nm. In an attempt to reduce the complexity of the current growth methodology we are also making alkali antimonides in parallel via the reaction of bulk materials in an inert environment. This approach has the advantage that the desired stoichiometry can be obtained exactly. Initial diffraction results from prepared bulk materials are promising and show the formation of well reacted K3Sb. In the future we intend to transfer this material to smooth thin photocathode films by either sputtering or pulsed laser deposition.
 
 
WEPWO084 Improvement of the Q-factor Measurement in RF Cavities 2489
 
  • W. Xu, S.A. Belomestnykh, I. Ben-Zvi, H. Hahn
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S.
The Q values of Higher-order-modes (HOMs) in RF cavities are measured at room temperature with the 3 dB bandwidth reading by a network analyzer. The resonant curve distortion is created by the resonance splitting due to the ellipticity caused by manufacture tolerance and RF ports. Therefore, the measured Q values are usually lower than the simulated or theoretical Q values. In some cases, even only one mode’s Q can be measured with the 3 dB method. There may be two reasons for this happening. One is that only one mode was excited and the neighbor splitmode was close to 90° polarized; the other reason is that the resonant curve of one mode was distorted by the other mode too much to measure the 3dB range. In this paper, we resolve this issue by looking into the RF measurement setup, including cavity, input coupler and pick-up coupler, from the equivalent circuit and wave point of view. Based on the BNL3 copper prototype cavity, we compared these results from measurement and simulation.
 
 
WEPWO085 Commissioning SRF Gun for the R&D ERL at BNL 2492
 
  • W. Xu, Z. Altinbas, S.A. Belomestnykh, I. Ben-Zvi, S. Deonarine, D.M. Gassner, H. Hahn, J.P. Jamilkowski, P. Kankiya, D. Kayran, N. Laloudakis, L. Masi, G.T. McIntyre, D. Pate, D. Phillips, T. Seda, K.S. Smith, A.N. Steszyn, T.N. Tallerico, R. Than, R.J. Todd, D. Weiss, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, J. Dai
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S.
The R&D ERL project at BNL aims to demonstrate a high charge, high current energy recovery linac. One of the key SRF system is the 704 MHz half-cell SRF gun. The SRF gun is designed to deliver up to 0.5 A beam at 2 MeV with 1 MW of CW RF power. The gun commissioning started in November 2012. The first photoemission beam from the SRF gun is expected in early 2013. This presentation will discuss the results of the SRF gun commissioning, and the performance of the high-power RF system.