Author: Angoletta, M. E.
Paper Title Page
WEPEA060 Plans for the Upgrade of CERN's Heavy Ion Complex 2645
 
  • D. Manglunki, M. E. Angoletta, H. Bartosik, A. Blas, D. Bodart, M.A. Bodendorfer, T. Bohl, J. Borburgh, E. Carlier, J.-M. Cravero, H. Damerau, L. Ducimetière, A. Findlay, R. Garoby, S.S. Gilardoni, B. Goddard, S. Hancock, E.B. Holzer, J.M. Jowett, T. Kramer, D. Kuchler, A.M. Lombardi, Y. Papaphilippou, S. Pasinelli, R. Scrivens, G. Tranquille
    CERN, Geneva, Switzerland
 
  To reach a luminosity higher than 6×1027 Hz/cm2 for Pb-Pb collisions, as expected by the ALICE experiment after its upgrade during the 2nd Long LHC Shutdown (LS2), several upgrades will have to be performed in the CERN accelerator complex, from the source to the LHC itself. This paper first details the present limitations and then describes the strategy for the different machines in the ion injector chain. Both filling schemes and possible hardware upgrades are discussed.  
 
WEPEA061 The First LHC p-Pb run: Performance of the Heavy Ion Production Complex 2648
 
  • D. Manglunki, M. E. Angoletta, H. Bartosik, G. Bellodi, A. Blas, M.A. Bodendorfer, T. Bohl, C. Carli, E. Carlier, S. Cettour Cave, K. Cornelis, H. Damerau, A. Findlay, S.S. Gilardoni, S. Hancock, J.M. Jowett, D. Kuchler, M. O'Neil, Y. Papaphilippou, S. Pasinelli, R. Scrivens, G. Tranquille, B. Vandorpe, U. Wehrle, J. Wenninger
    CERN, Geneva, Switzerland
 
  TThe first LHC proton-ion run took place in January-February 2013; it was the first extension to the collider programme, as this mode was not included in the design report. This paper presents the performance of the heavy ion and proton production complex, and details the issues encountered, in particular the creation of the same bunch pattern in both beams.  
 
WEPEA063 Upgrades and Consolidation of the CERN AD for Operation during the Next Decades 2654
 
  • T. Eriksson, M. E. Angoletta, L. Arnaudon, J.A. Baillie, M. Calviani, F. Caspers, L.V. Joergensen, R. Kersevan, G. Le Godec, R. Louwerse, M. Ludwig, S. Maury, A. Newborough, C. Oliveira, G. Tranquille
    CERN, Geneva, Switzerland
 
  As the ELENA project is now well underway, focus is turned to the Antiproton Decelerator (AD) itself. Most of the machine’s key components are in operation since more than 25 years and a substantial consolidation program is now being launched in view of continued operation beyond 2025. Over the course of the next few years a progressive consolidation of the AD-Target area, the AD-ring and all associated systems will take place. Several investigations have recently been performed in the target area with the objective of establishing the radiation environment and the sensitivity of the antiproton production to potential misalignment of the production elements. Identification of reliability and serviceability issues of the AD-ring components and associated systems has been done and will continue during the 2013 shut-down. Planned and ongoing consolidation activities are also discussed with emphasis on stochastic and electron beam cooling, instrumentation, RF systems, vacuum, magnets, power converters and beam transfer equipment.  
 
WEPEA065 Beam Tests and Plans for the CERN PS Booster Wideband RF System Prototype 2660
 
  • M.M. Paoluzzi, M. E. Angoletta, A. Findlay, M. Haase, M. Jaussi
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injectors Upgrade project (LIU) and in view of a complete replacement of the existing CERN PS Booster (PSB) RF systems, a prototype cavity has been installed beginning of 2012 in the machine. This modular, wideband (0.5 / 4 MHz), Finemet® loaded system uses solid-state power stages and includes fast RF feedback for beam loading compensation. In depth studies have been performed during 2012 to evaluate the system interaction with the new low-level digital electronics, its ability to accelerate the beam and cope with high beam intensity. The encouraging results suggest that this innovative approach can indeed be used to replace all the existing PSB RF systems but additional testing with a full scale prototype is required. This paper reports about the project status, the achieved results, the encountered difficulties and the foreseen prototype completion in preparation during 2013.  
 
THPWO078 Status of the Upgrade of the CERN PS Booster 3939
 
  • K. Hanke, O. Aberle, M. E. Angoletta, W. Bartmann, S. Bartolome, E. Benedetto, C. Bertone, A. Blas, P. Bonnal, J. Borburgh, D. Bozzini, A.C. Butterworth, C. Carli, E. Carlier, J.R.T. Cole, P. Dahlen, M. Delonca, T. Dobers, A. Findlay, R. Froeschl, J. Hansen, D. Hay, S. Jensen, J.-M. Lacroix, P. Le Roux, L.A. Lopez Hernandez, C. Maglioni, A. Masi, G.W. Mason, S.J. Mathot, B. Mikulec, Y. Muttoni, A. Newborough, D. Nisbet, S. Olek, M.M. Paoluzzi, A. Perillo-Marcone, S. Pittet, B. Puccio, V. Raginel, B. Riffaud, I. Ruehl, A. Sarrió Martínez, J. Tan, B. Todd, V. Venturi, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The CERN PS Booster (PSB) is presently undergoing an ambitious consolidation and upgrade program within the frame of the LHC Injectors Upgrade (LIU) project. This program comprises a new injection scheme for H ions from CERN’s new Linac4, the replacement of the main RF systems and an energy upgrade of the PSB rings from 1.4 to 2.0 GeV which includes the replacement of the main magnet power supply as well as the upgrade of the extraction equipment. This paper describes the status and plans of this work program.