Author: Wolski, A.
Paper Title Page
MOPPC013 Optics and Lattice Optimizations for the LHC Upgrade Project 151
 
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • R. Appleby
    UMAN, Manchester, United Kingdom
  • A.V. Bogomyagkov
    BINP SB RAS, Novosibirsk, Russia
  • A. Chancé, J. Payet
    CEA/DSM/IRFU, France
  • R. De Maria, B.J. Holzer
    CERN, Geneva, Switzerland
  • A. Faus-Golfe, J. Resta-López
    IFIC, Valencia, Spain
  • K.M. Hock, M. Korostelev, L.N.S. Thompson, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C. Milardi
    INFN/LNF, Frascati (Roma), Italy
 
  The luminosity upgrade of the LHC collider at CERN is based on a strong focusing scheme to reach lowest values of the beta function at the collision points. Several issues have to be addressed in this context, that are considered as mid term goals for the optimisation of the lattice and beam optics: Firstly a number of beam optics have been developed to establish a baseline for the hardware R&D, and to define the specifications for the new magnets that will be needed, in Nb3Sn and in NbTi technology. Secondly, the need for sufficient flexibility of the beam optics especially for smallest β* values has to be investigated as well as the need for a smooth transition between the injection and the collision optics. Finally the performance of the optics based on flat and round beams has to be compared and different ways have to be studied to optimise the chromatic correction, including the study of local correction schemes. This paper presents the status of this work, which is a result of an international collaboration, and summarises the main parameters that are foreseen to reach the HL-LHC luminosity goal.  
 
MOPPR059 Modeling Space-charge and its Influence on the Measurement of Phase Space in ALICE by Tomographic Methods 918
 
  • M.G. Ibison, D.J. Holder
    The University of Liverpool, Liverpool, United Kingdom
  • K.M. Hock, B.D. Muratori, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: STFC.
ALICE is an experimental electron accelerator designed to operate over a range of energies up to 35 MeV, and with up to 80 pC bunch charge. A dedicated tomography diagnostic section allows measurement of the transverse phase space with different beam parameters. In the low-energy, high-charge regime, space charge effects must be considered: to quantify these effects, the tracking code GPT has been used to simulate beams in the tomography diagnostic section. The results can be compared with simplified models, and with experimental measurements.