Author: Uythoven, J.A.
Paper Title Page
TUPPR093 Sources and Solutions for LHC Transfer Line Stability Issues 2047
 
  • L.N. Drosdal, W. Bartmann, C. Bracco, B. Goddard, V. Kain, G. Le Godec, M. Meddahi, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The LHC is filled through two 3km transfer lines from the last pre-injector, the SPS. Safe injection into the LHC requires stable trajectories in the transfer lines. During the LHC proton operations 2011 instabilities were observed. In particular shot-by-shot and bunch-by-bunch variations cause difficulties for steering of the beam and can potentially cause high beam losses at injection. The causes of these instabilities have been studied and will be presented in this paper. Based on the studies solutions will be proposed and finally the effects of the solutions will be studied.  
 
TUPPR096 Angular Alignment of the LHC Injection Protection Stopper 2056
 
  • C. Bracco, R.W. Assmann, W. Bartmann, B. Goddard, V. Kain, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  Machine safety depends critically on the correct setup of the protection elements. One of the injection protection collimators is constituted by exceptionally long jaws (4 m). For this element, an angular offset of the jaws could affect significantly the measured beam size and, as a consequence, the correct setup with respect to the beam. Dedicated studies and cross-calibrations have been performed to quantify the effect of tilts and offsets on the setup of this collimator and to check the provided passive protection.  
 
MOPPD058 LHC Abort Gap Cleaning Studies during Luminosity Operation 496
 
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
  • W. Bartmann, A. Boccardi, C. Bracco, E. Bravin, B. Goddard, W. Höfle, D. Jacquet, A. Jeff, V. Kain, M. Meddahi, F. Roncarolo, J.A. Uythoven, D. Valuch
    CERN, Geneva, Switzerland
 
  The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both Abort Gap (AG) and buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation as well. In this paper the results of experimental studies performed in October 2011 are presented.  
 
TUPPR092 Transient Beam Losses in the LHC Injection Kickers from Micron Scale Dust Particles 2044
 
  • B. Goddard, P. Adraktas, T. Baer, M.J. Barnes, F. Cerutti, A. Ferrari, N. Garrel, A.H.J. Gerardin, M. Guinchard, A. Lechner, A. Masi, V. Mertens, R. Morón Ballester, S. Redaelli, J.A. Uythoven, V. Vlachoudis, F. Zimmermann
    CERN, Geneva, Switzerland
 
  Transient beam losses on a time scale of a few ms have been observed in the LHC injection kickers, occurring mainly shortly after beam injection with a strong correlation in time to the kicker pulsing. The beam losses, which have at times affected LHC availability, are attributed to micron scale ceramic dust particles detached from the alumina beam pipe and accelerated into the beam. The beam related observations are described, together with laboratory measurements of beam pipe contamination and kicker vibration, simulations of electric field in the beam pipe and the basic dynamic model. Energy deposition simulations modelling the beam losses are presented and compared to measurement. Extrapolations to future LHC operation at higher intensities and energies are made, and prospects for mitigation are discussed.  
 
THPPR040 First Operational Experience with the LHC Machine Protection System when Operating with Beam Energies Beyond the 100 MJ Range 4062
 
  • M. Zerlauth, R.W. Assmann, B. Dehning, M. Ferro-Luzzi, B. Goddard, M. Lamont, R. Schmidt, A.P. Siemko, J.A. Uythoven, J. Wenninger
    CERN, Geneva, Switzerland
 
  The LHC made a remarkable progress in luminosity production during 2011 operation. This was made possible by a progressive increase of beam intensities by more than 5 orders of magnitude, reaching stored beam energies beyond 100MJ at the end of the year. The correct functioning of the machine protection systems was vital during initial operation and even more when approaching nominal beam parameters, where an uncontrolled loss of a small fraction of the beam is already sufficient to damage accelerator equipment or the large experimental detectors The machine protection system depends on the interplay of many different elements: beam dumping system, beam interlocks, beam instrumentation, equipment monitoring, collimators and absorbers, etc. The strategy applied during 2011 to allow for an efficient but yet safe increase of the beam intensities is presented along with the associated risks and drawbacks of a too aggressive approach. The experience gained with the key systems will be discussed along with possibilities to further enhance machine availability whilst maintaining the current level of safety.  
 
THPPP018 Operation of the LHC at High Luminosity and High Stored Energy 3767
 
  • J. Wenninger, R. Alemany-Fernandez, G. Arduini, R.W. Assmann, B.J. Holzer, E.B. Holzer, V. Kain, M. Lamont, A. Macpherson, G. Papotti, M. Pojer, L. Ponce, S. Redaelli, M. Solfaroli Camillocci, J.A. Uythoven, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
 
  In 2011 the operation of the Large Hadron Collider LHC entered its first year of high luminosity production at a beam energy of 3.5 TeV. In the first months of 2011 the number of bunches was progressively increased to 1380, followed by a reduction of the transverse emittance, an increase of the bunch population and a reduction of the betatron function at the collision points. The performance improvements steps that were accumulated in 2011 eventually brought the peak luminosity to 3.6·1033 cm-2s−1. The integrated luminosity delivered to each of the high luminosity experiments amounted to 5.6 fb-1, a factor of 5 above the initial target defined in 2010. The operational experience with high intensity and high luminosity at the LHC will be presented here, together with the issues that had to be tackled on the road to high intensity and luminosity.  
 
THPPP086 UFOs in the LHC: Observations, Studies and Extrapolations 3936
 
  • T. Baer, M.J. Barnes, F. Cerutti, A. Ferrari, N. Garrel, B. Goddard, E.B. Holzer, S. Jackson, A. Lechner, V. Mertens, M. Misiowiec, E. Nebot Del Busto, A. Nordt, J.A. Uythoven, V. Vlachoudis, J. Wenninger, C. Zamantzas, F. Zimmermann
    CERN, Geneva, Switzerland
  • T. Baer
    University of Hamburg, Hamburg, Germany
  • N. Fuster Martinez
    Valencia University, Atomic Molecular and Nuclear Physics Department, Valencia, Spain
 
  Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation. They are presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam. With large-scale increases and optimizations of the beam loss monitor (BLM) thresholds, their impact on LHC availability was mitigated from mid 2011 onwards. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. In 2011/12, the diagnostics for UFO events were significantly improved: dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge, extrapolations for nominal LHC operation and mitigation strategies are presented.