Author: Tuozzolo, J.E.
Paper Title Page
MOPPC025 RHIC Polarized Proton Operation in Run 12 184
  • V. Schoefer, L. A. Ahrens, A. Anders, E.C. Aschenauer, G. Atoian, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, R.L. Hulsart, A. Kirleis, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, F. Severino, D. Smirnov, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
  Successful RHIC operation with polarized protons requires meeting demanding and sometimes competing goals for maximizing both luminosity and beam polarization. In Run 12 we sought to fully integrate into operation the many systems that were newly commissioned in Run 11 as well as to enhance collider performance with incremental improvements throughout the acceleration cycle. For luminosity maximization special attention was paid to several possible source of emittance dilution along the injector chain, in particular to optical matching during transfer between accelerators. Possible sources of depolarization in the AGS and RHIC were also investigated including the effects of local coupling and low frequency (10 Hz) oscillations in the vertical equilibrium orbit during the RHIC ramp. The results of a fine storage energy scan made in an effort to improve store polarization lifetime are also reported in this note.  
MOPPD016 Status of Proof-of-principle Experiment for Coherent Electron Cooling 400
  • I. Pinayev, S.A. Belomestnykh, I. Ben-Zvi, J. Bengtsson, A. Elizarov, A.V. Fedotov, D.M. Gassner, Y. Hao, D. Kayran, V. Litvinenko, G.J. Mahler, W. Meng, T. Roser, B. Sheehy, R. Than, J.E. Tuozzolo, G. Wang, S.D. Webb, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, D.L. Bruhwiler, V.H. Ranjbar, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  Funding: US DOE Office of Science, DE-FC02-07ER41499, DE-FG02-08ER85182; NERSC DOE contract No. DE-AC02-05CH11231.
Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. To verify the concept we conduct proof-of-the-principle experiment at RHIC. In this paper, we describe the current experimental setup to be installed into 2 o’clock RHIC interaction regions. We present current design, status of equipment acquisition and estimates for the expected beam parameters.
MOPPP028 SRF Photoinjector for Proof-of-principle Experiment of Coherent Electron Cooling at RHIC 622
  • D. Kayran, S.A. Belomestnykh, I. Ben-Zvi, J.C. Brutus, X. Liang, G.T. McIntyre, I. Pinayev, B. Sheehy, J. Skaritka, T. Srinivasan-Rao, R. Than, J.E. Tuozzolo, Q. Wu, T. Xin
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko, M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and by Stony Brook DOE grant DE-SC0005713.
Coherent Electron Cooling (CEC) based on FEL amplifier promises to be a very good way to cool protons and ions at high energies. A proof of principle experiment to demonstrate cooling at 40 GeV/u is under construction at BNL. One of possible sources to provide sufficient quality electron beam for this experiment is a SRF photoinjector. In this paper we discuss design and simulated performance of the photoinjector based on existing 112 MHz SRF gun and newly designed single-cavity SRF linac operating at 704 MHz.
WEOBA01 Construction Progress of the RHIC Electron Lenses 2125
  • W. Fischer, Z. Altinbas, M. Anerella, E.N. Beebe, M. Blaskiewicz, D. Bruno, W.C. Dawson, D.M. Gassner, X. Gu, R.C. Gupta, K. Hamdi, J. Hock, L.T. Hoff, A.K. Jain, R.F. Lambiase, Y. Luo, M. Mapes, A. Marone, T.A. Miller, M.G. Minty, C. Montag, M. Okamura, A.I. Pikin, S.R. Plate, D. Raparia, Y. Tan, C. Theisen, P. Thieberger, J.E. Tuozzolo, P. Wanderer, S.M. White, W. Zhang
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
In polarized proton operation, the RHIC performance is limited by the head-on beam-beam effect. To overcome these limitations two electron lenses are under construction. We give an overview of the progress over the last year. Guns, collectors and the warm electron beam transport solenoids with their associated power supplies have been constructed. The superconducting solenoids that guide the electron beam during the interaction with the proton beam are near completion. A test stand has been set up to verify the performance of gun, collector and some of the instrumentation. The RHIC infrastructure is being prepared for installation, and simulations continue to optimize the performance.
slides icon Slides WEOBA01 [7.672 MB]  
WEPPC109 Superconducting RF Systems for eRHIC 2474
  • S.A. Belomestnykh, I. Ben-Zvi, J.C. Brutus, H. Hahn, D. Kayran, G.J. Mahler, G.T. McIntyre, C. Pai, I. Pinayev, V. Ptitsyn, J. Skaritka, R. Than, J.E. Tuozzolo, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, V. Litvinenko, T. Xin
    Stony Brook University, Stony Brook, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Future electron-hadron collider eRHIC will consist of a six-pass 30-GeV electron ERL and one of RHIC storage rings operating with energy up to 250 GeV. The collider design extensively utilizes superconducting RF (SRF) technology in both electron and hadron parts. This paper describes various SRF systems, their requirements and parameters.
WEPPD084 The E-Lens Test Bench for Rhic Beam-Beam Compensation 2720
  • X. Gu, Z. Altinbas, J.N. Aronson, E.N. Beebe, W. Fischer, D.M. Gassner, K. Hamdi, J. Hock, L.T. Hoff, P. Kankiya, R.F. Lambiase, Y. Luo, M. Mapes, J.-L. Mi, T.A. Miller, C. Montag, S. Nemesure, M. Okamura, R.H. Olsen, A.I. Pikin, D. Raparia, P.J. Rosas, J. Sandberg, Y. Tan, C. Theisen, P. Thieberger, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To compensate for the beam-beam effects from the proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are fabricating two electron lenses that we plan to install at RHIC IR10. Before installing the e-lenses, we are setting-up the e-lens test bench to test the electron gun, collector, GS1 coil, modulator, partial control system, some instrumentation, and the application software. Some e-lens power supplies, the electronics for current measurement will also be qualified on test bench. The test bench also was designed for measuring the properties of the cathode and the profile of the beam. In this paper, we introduce the layout and elements of the e-lens test bench; and we discuss its present status towards the end of this paper.
THPPD085 Research and Development of RHIC Injection Kicker Upgrade with Nano Second FID Pulse Generator 3716
  • W. Zhang, W. Fischer, H. Hahn, C.J. Liaw, C. Pai, J. Sandberg, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Our recent effort to test a 50 kV, 1 kA, 50 ns pulse width, 10 ns pulse rise time FID pulse generator with 250 ft transmission cable, resistive load, and existing RHIC injection kicker magnet has produced unparalleled result. This is the very first attempt to drive a high strength fast kicker magnet with a nanosecond high pulsed power (50 MVA) generator for large accelerator and colliders. The technology is impressive. We report here the result and future plan of RHIC Injection kicker upgrade.