Author: Pasquinelli, R.J.
Paper Title Page
WEPPC059 A Two-stage Injection-locked Magnetron for Accelerators with Superconducting Cavities 2348
 
  • G.M. Kazakevich, G. Flanagan, R.P. Johnson, F. Marhauser, M.L. Neubauer
    Muons, Inc, Batavia, USA
  • B. Chase, S. Nagaitsev, R.J. Pasquinelli, N. Solyak, V. Tupikov, D. Wolff, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Supported in part by SBIR Grant 4743 11SC06261
A concept for a two-stage injection-locked CW magnetron intended to drive Superconducting Cavities (SC) for intensity-frontier accelerators has been proposed. The concept is based on a theoretical model that considers a magnetron as a forced oscillator; the model has been experimentally verified with a 2.5 MW pulsed magnetron. The two-stage CW magnetron can be used as a RF power source for Fermilab’s Project-X to feed separately each of the SC of the 8 GeV pulsed linac. For Project-X the 1.3 GHz two-stage magnetron with output power of 20-25 kW and expected output/input power ratio of about 35-40 dB would operate in a quasi-CW mode with a pulse duration ≤ 10 ms and repetition rate of 10 Hz. The magnetrons for both stages should be based on the commercial prototypes to decrease the cost of the system. An experimental model of the two-stage CW S-band magnetron with peak power of 1 kW, with pulse duration of 1-10 ms, has been developed and built for study. A description of the theoretical and experimental models, simulations, and experimental results are presented and discussed in this work.
 
 
WEPPC060 A High-power 650 MHz CW Magnetron Transmitter for Intensity Frontier Superconducting Accelerators 2351
 
  • G.M. Kazakevich, G. Flanagan, R.P. Johnson, F. Marhauser, M.L. Neubauer
    Muons, Inc, Batavia, USA
  • B. Chase, S. Nagaitsev, R.J. Pasquinelli, V.P. Yakovlev
    Fermilab, Batavia, USA
  • T.A. Treado
    CPI, Beverley, Massachusetts, USA
 
  A concept of a 650 MHz CW magnetron transmitter with fast control in phase and power, based on two-stage injection-locked CW magnetrons, has been proposed to drive Superconducting Cavities (SC) for intensity-frontier accelerators. The concept is based on a theoretical model considering a magnetron as a forced oscillator and experimentally verified with a 2.5 MW pulsed magnetron. To fulfill fast control of phase and output power requirements of SC accelerators, both two-stage injection-locked CW magnetrons are combined with a 3-dB hybrid. Fast control in output power is achieved by varying the input phase of one of the magnetrons. For output power up to 250 kW we expect the output/input power ratio to be about 35 to 40 dB in CW or quasi-CW mode with long pulse duration. All magnetrons of the transmitter should be based on commercially available models to decrease the cost of the system. An experimental model using 1 kW, CW, S-band, injection-locked magnetrons with a 3-dB hybrid combiner has been developed and built for study. A description of the model, simulations, and experimental results are presented and discussed in this work.  
 
WEPPD078 Progress with PXIE MEBT Chopper 2708
 
  • V.A. Lebedev, A.Z. Chen, R.J. Pasquinelli, D.W. Peterson, G.W. Saewert, A.V. Shemyakin, D. Sun, M. Wendt
    Fermilab, Batavia, USA
  • T. Tang
    SLAC, Menlo Park, California, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy
A capability to provide a large variety of bunch patterns is crucial for the concept of the Project X serving MW-range beam to several experiments simultaneously. This capability will be realized by the Medium Energy Beam Transport’s (MEBT) chopping system that will divert 80% of all bunches of the initially 5mA, 2.1 MeV CW 162.5 MHz beam to an absorber according to a pre-programmed bunch-by-bunch selection. Being considered one of the most challenging components, the chopping system will be tested at the Project X Injector Experiment (PXIE) facility that will be built at Fermilab as a prototype of the Project X front end. The bunch deflection will be made by two identical sets of travelling-wave kickers working in sync. Presently, two versions of the kickers are being investigated: a helical 200 Ω structure with a switching-type 500 V driver and a planar 50 Ω structure with a linear ±250 V amplifier. This paper will describe the chopping system scheme and functional specifications for the kickers, present results of electromagnetic measurements of the models, discuss possible driver schemes, and show a conceptual mechanical design.
 
 
THPPP062 The Six-Cavity Test - Demonstrated Acceleration of Beam with Multiple RF Cavities and a Single Klystron 3877
 
  • J. Steimel, J.-P. Carneiro, B. Chase, S. Chaurize, E. Cullerton, B.M. Hanna, R.L. Madrak, R.J. Pasquinelli, L.R. Prost, L. Ristori, V.E. Scarpine, P. Varghese, R.C. Webber, D. Wildman
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The High Intensity Neutrino Source (HINS) ‘Six-Cavity Test’ has demonstrated the use of high power RF vector modulators to control multiple RF cavities driven by a single high power klystron to accelerate a non-relativistic beam. Installation of 6 cavities in the existing HINS beamline has been completed and beam measurements have started. We present data showing the energy stability of the 7 mA proton beam accelerated through the six cavities from 2.5 MeV to 3.4 MeV.
 
 
FRXCB01 Review of Microwave Schottky Beam Diagnostics 4175
 
  • R.J. Pasquinelli
    Fermilab, Batavia, USA
 
  Non-intercepting beam diagnostics for detection of the incoherent motion of the finite number of beam particles, i.e. Schottky beam monitors, have been proven as extremely useful to characterize tune, chromaticity, and momentum spread in circular accelerators and colliders. This beam instrument, based on advanced microwave techniques, operates successfully in Recycler and Tevatron, and was recently implemented in the Large Hadron Collider. This presentation should review the technology of Schottky beam diagnostics systems with an emphasis on initial deployment at the Tevatron, concluding with the latest measurement results from the LHC and an outlook of possible improvements and extensions of the diagnostics.  
slides icon Slides FRXCB01 [22.518 MB]