

Ralph J. Pasquinelli May 2012 IPAC 12

Tevatron Schottky Signals 1992 Bunched Beam Cooling Attemp

Tune, momentum spread, chromaticity derived from frequency domain

Planar Pickup Arrays

4-8 GHz Planar Loop Pickups for Tevatron Bunched Beam Cooling

Gating is Essential & Allows Single/Multiple Bunch Monitoring

Figure 10. Effect of gating on signal to noise ratio. Left ungated bunched beam cooling signal. Right same signal with gating.

May 2012

IPAC 12, New Orleans, LA

Schottky Pickup Frequency Response

Debuncher Cooling 8 Bands 4-8 GHz 1999

Accumulator Core Cooling 3 Bands 4-8 GHz 2002

IPAC 12, New Orleans, LA

IPAC 12, New Orleans, LA

Measured Pickup Sensitivity in Recycler 2003

Sum Mode

Difference Mode

Directivity Measured at 12-15 dB

Beam Centering Reduces Common Mode

Not an Option for the Tevatron with Protons & Antiprotons on Helical Orbits

Recycler Horizontal Pickup 1 x 10¹¹ Protons

FermilabMicrowave Schottky Beam DiagnosticsLocation of Tevatron Schottky Pickups

IPAC 12, New Orleans, LA

Tevatron Installation

January 2003

May 2012

IPAC 12, New Orleans, LA

Original Tevatron Schottky Signal Processing

Single Sideband Demodulation Preserves Chromaticity

IPAC 12, New Orleans, LA

Tevatron Schottky Signal Large Common Mode Signal Requires High Dynamic Range

Fermilab Microwave Schottky Beam Diagnostics 1.7 GHz Tevatron Single Bunch Horizontal Protons

HARP LHC Collaboration

Propose Schottky system for LHC, Fall 2004
 Schottky accepted as part of LARP, Summer 2005
 Pickup design complete, plans sent to CERN, construction begins, Spring 2006
 Design of analog processing electronics with prototype, Fall 2006
 Installation of pickups and processor hardware at CERN, Spring 2007
 Installation of control interface hardware at CERN, Spring 2008
 Initial commissioning with beam 2009
 Turn over operation to CERN 2010

Microwave Schottky Beam Diagnostics Location of LHC Schottky Pickups

IPAC 12, New Orleans, LA

Figure 2. Impedance of LHC Schottky pickup
May 2012
IPAC 12, New Orleans, LA

Tight Squeeze LHC Beam Pipes Separated by 194 millimeters

May 2012

IPAC 12, New Orleans, LA

LHC Schottky Triple Heterodyne Block Diagram

RP LHC 4.8 GHz Scho	ottky M	onitor Sv	stem Nois	e and Dv	namic Ran	ae Analy	sis	,	**	-					4	
ot bunch case 5x10^	9 hybrid	d CMRR 2	20 dB	,		,				~		3.7	•		1	
sts of the 1.7 GHz Schottky	at the SP	S with 10^1	11 per bunch	vielded 5 v	olts delta an	d 51 volts	sum at the l	hybrid out	tput	120	tom	NIC	nico L	no	1.1.1	70
se results are used to estin	mate the	signal leve	I for the 4.8	GHz Schott	ky. Hybrid Cl	MRR was 2	0 dB for the	CERN tes	t. 人) ysi	iem	110	ise r	1	ιys	13
										•					•	
culations are done for singl	le revolut	ion lines. 1	The integrate	d signal po	wer is also ca	Iculated s	o that									
nitoring of gain saturation i	is possibi	e at all stag	ges. lotal si	gnaipower	is adjusted w	ith every c	nange in ba	nawath a	ue to a r	ilter.						
Bold/RED Values	are inp	outs												a		
estimated input sig			cavity filter 3 dB				effective			input inc	oherent					
power	0	dBm	bandwidth		20	MHz	gain before	8128.3	linear	schottky	SNR for	injection	-18			
			xtal filter 3 dB			500 C	gate		10	pilot [dB]		100.0				
Pickup input bandwidth	200	MHZ	bandwidth		15	KHZ		39.1	dB	5 S S	-	collision	-25			
								í								
KTB noise floor @ 290K	-174	dBm/Hz	fo revolution	1	11	kHz	gain due to	3096.0	linear							
							gating									
total input KTB noise	-91.0	abm	pk to pkADO	volts	2.8	voits		34.9	GR				-			
			Baseband G	ain for												
input noise per rev band	-133.6	dBm	peak to ADO	2	4.9292338	dB			1							
nput incoherent	18.0 48				2 005 04											
SCHOTTRY SNR	-18.0	dВ	gate duty ra	itio	2.00E-04											
					Gain							total		-		
					adiacent 2			per rev	per rev		SNR	output				
	INPUT	INPUT		Gain	stages	system	system NF	signal	noise		transverse	signal	stage			
Stage Description	NF dB	Gain dB	NF linear	linear	linear	NF liner	dB	dBm	dBm	S/N dB	[dB]	dBm	description			
1 PU out	0.00	0.00	1.00	1.00	1.00	1.000	0.00	-44.6	-133.6	89.0	-18.00	0.0	PU out	1		
2 hybrid out including losse	2.00	-2.00	1.58	0.63	0.63	1.585	2.00	-46.6	-133.6	87.0	-20.00	-2.0	hybrid out incl	uding loss	ses from	switches an
3 cavity BPF 20 MHz	2.00	-2.00	1.58	0.63	0.40	2.512	4.00	-48.6	-133.6	85.0	-22.00	-24.0	cavity BPF 20	Cavity fil	ter, Cente	er=4.8 GHz,
4 amp 1	2.00	35.00	1.58	3162.28	1258.93	3.981	6.00	-13.6	-96.6	83.0	-24.00	11.0	amp 1	Miteq AF	SD4-0200	060-20-27P
5 7/8" coax loss	7.00	-7.00	5.01	0.20	251.19	3.984	6.00	-20.6	-103.6	83.0	-24.00	4.0	7/8" coax loss			
gate preampli	5.00	15.00	3.16	31.62	7943.28	3.993	6.01	-5.6	-88.6	83.0	-24.01	19.0	gate preampli	to he aba		
splitter	3.90	-3.90	2.45	0.41	3235.94	3.993	6.01	-9.5	-92.5	83.0	-24.01	15.1	splitter	to be cho	osen	
a cavity BRE 20 MHz 1	3.00	-3.00	1.59	0.50	1021.01	3.993	6.01	-14.5	-95.5	83.0	10.89	12.1	gate switch	MH-1		
amp 2	3.70	12.00	2.34	15.85	16218 10	3 005	6.02	-14.5	-97.5	83.0	10.89	22.1	amp 2	112 1		
1 cavity BPE 20 MHz 2	2.00	-2.00	1.58	0.63	10232.93	3 995	6.02	-4.5	-87.5	83.0	10.89	20.1	cavity BPE 20	MH7 2		
amn 3	3.70	12.00	2 34	15.85	162181.01	3 995	6.02	7.5	-75 5	83.0	10.89	32.1	amn 3	1112 2		
3 splitter	3.90	-3.90	2.54	0.41	66069 34	3,995	6.02	3.6	-79.4	83.0	10.89	28.2	splitter			
1 1st mixer	5.00	-5.00	3.16	0.32	20892.96	3,995	6.02	-1.4	-84.4	83.0	10.89	23.2	1st mixer			
5 LPF+split	4.30	-4.30	2.69	0.37	7762.47	3,995	6.02	-5.7	-88.7	83.0	10.89	18.9	LPF+split			
5 2nd mixer	6.00	-6.00	3.98	0.25	1949.84	3.996	6.02	-11.7	-94.7	83.0	10.89	12.9	2nd mixer			
/ LPF and split	4.30	-4.30	2.69	0.37	724.44	3.997	6.02	-16.0	-99.0	83.0	10.89	8.6	LPF and split			
gain block	4.20	20.00	2.63	100.00	72443.60	3.999	6.02	4.0	-79.0	83.0	10.89	28.6	gain block			
xtal filter #1	6.00	-6.00	3.98	0.25	18197.01	3.999	6.02	-2.0	-85.0	83.0	10.89	-8.6	xtal filter #1			
) gain block	4.20	20.00	2.63	100.00	1819700.86	3.999	6.02	18.0	-65.0	83.0	10.89	11.4	gain block			
1	0.00	0.00	1.00	1.00	1819700.86	3.999	6.02	18.0	-65.0	83.0	10.89	11.4	0			
2 3rd mixer	6.00	-6.00	3.98	0.25	457088.19	3.999	6.02	12.0	-71.0	83.0	10.89	5.4	3rd mixer			
3 LPF	1.00	-1.00	1.26	0.79	363078.05	3.999	6.02	11.0	-72.0	83.0	10.89	4.4	LPF			

May 2012

Pickup tanks installed at Point 4, Spring 2007

Hardware Test Set UP @ Fermilab

IPAC 12, New Orleans, LA

Triple Conversion Electronics Installed in Tevatron at E17 June 2007

Figure 6. Measured 100 dB instantaneous dynamic range at baseband in Tevatron signal processing electronics utilizing triple down conversion and crystal filters in 20 db steps. Input signal ranges from +10 dBm to -90 dBm. Center frequency 30 KHz, 2 KHz/div, 10 dB/div.

Importance of Low Phase Noise Local Oscillators

Fermilab

400 MHZ IF FRONT PANEL

Test in the Tevatron - 400 MHz IF

Different Widths of Sidebands allows Chromaticity Measurement

Fermilab

BASE BAND OUTPUT PRONS PANEL

Test in the Tevatron - Baseband output

400.78897 MHz RF to 10 MHz Reference Divider for LO sync

10.000 MHz Output

Fermilab Microwave Schottky Beam Diagnostics

May 2012

IPAC 12, New Orleans, LA

LHC Pickup Plate Hardware Switches, Variable Attenuator and Phase Shifter allow for Calibration & Common Mode Rejection

Fermilab Microwave Schottky Beam Diagnostics Crated up and on its way to CERN April 2007!

IPAC 12, New Orleans, LA

May 2012

IPAC 12, New Orleans, LA

Cable plant alcove point 4

IPAC 12, New Orleans, LA

Tevatron Schottky Comfort Displays

Protons

Antiprotons

IPAC 12, New Orleans, LA

Tevatron Tune Plot and Gate Monitor Comfort Displays

Tevatron AntiprotonBeam-Beam
Tune shifthorz
tuneBefore and AfterCorrection
based onvert
tuneSchottky Measurement0.58

Thu 30-MAR-2006 14:27:50

Measured Beam Beam Tevatron Tune Shift

Fermilab Microwave Schottky Beam Diagnostics

IPAC 12, New Orleans, LA

Fermilab Microwave Schottky Beam Diagnostics LHC Schottky Comparison Protons and Ions

Fermilab

Microwave Schottky Beam Diagnostics LHC Schottky Protons @ 3.5 TeV

LHC Schottky Chromaticity Injection thru Ramp

IPAC 12, New Orleans, LA

Tevatron

IPAC 12, New Orleans, LA

#Summary

H & V Pbar Schottky in Recyler 2003-2011
H & V Proton + Pbar Schottky in Tevatron 2003- 2011
H & V Proton + Proton Schottky in LHC 2009-Present
Ability to measure tune, chromaticity, momentum spread
Gating allows measurment of individual and any combination of bunches
Emittance can be measured when calibrated
100 dB of dynamic range

Thank You!

