Author: Park, Y.J.
Paper Title Page
TUPPD061 High-Power RF Test of an RF-Gun for PAL-XFEL 1539
 
  • J.H. Hong, J.H. Han, H.-S. Kang, C. Kim, S.H. Kim, C.-K. Min, S.S. Park, S.J. Park, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  • M.S. Chae, I.S. Ko, Y.W. Parc
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  A photocathode RF-gun for the X-ray free electron laser (XFEL) at the Pohang Accelerator Laboratory (PAL) has been fabricated and tested at PAL. This RF-gun is based on a 1.6-cell cavity with dual-feed waveguide ports and two pumping ports. The RF gun was designed by PAL and POSTECH. The RF-gun has been successfully tested with a cathode electric field gradient up to 126MV/m at a repetition rate of 30 Hz. This paper reports the recent results on the beam test of the RF-gun with high power RF at the gun test facility. We present and discuss the measurements of the basic beam parameters such as charge, energy, energy spread, and transverse emittance.  
 
THPPC057 S-band High Power RF System for 10 GeV PAL-XFEL 3419
 
  • W.H. Hwang, J.Y. Huang, Y.D. Joo, H.-S. Kang, H.-G. Kim, S.H. Kim, H.-S. Lee, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  In PAL, We are constructing a 10GeV PxFEL project. The output power of the klystron is 80 MW at the pulse width of 4 ㎲ and the repetition rate of 120 Hz. In high power operation, it is important to decrease the rf electric field to protect rf break-down in high power rf components. To obtain the maximum beam, we must reduce the phase difference between waveguide branches including accelerating structure and minimize the environment influences. This paper describes the waveguide system and high power rf components for the PxFEL.  
 
THPPC016 PLSII Linac RF Conditioning Status 3311
 
  • H.-S. Lee, J.Y. Huang, W.H. Hwang, H.-G. Kim, K.R. Kim, S.H. Kim, S.H. Kim, S.H. Nam, W. Namkung, S.S. Park, S.J. Park, Y.J. Park, S. Shin
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  PLS linac has been upgraded in energy from 2.5 to 3.0 GeV. A klystron supplies RF power of 80 MW four acceleration structures through a SLED. But our machine is not enough RF power to get 3 GeV beam energy. So we have changed the RF scheme in four modules as a klystron supplies RF power of 80 MW two accelerating structures through a SLED. There were several problems during the RF conditioning and beam operation. So we will describe the conditioning results and the current status in this paper.