Author: Niinikoski, T.O.
Paper Title Page
TUPPR033 Improved Modelling of the Thermo-mechanical Behavior of the CLIC Two-Beam Module 1891
 
  • G. Riddone, T.O. Niinikoski, F. Rossi
    CERN, Geneva, Switzerland
  • R.J. Raatikainen, K. Österberg
    HIP, University of Helsinki, Finland
  • A. Samoshkin
    JINR, Dubna, Moscow Region, Russia
 
  The luminosity goal of the CLIC collider, currently under study, imposes micrometer mechanical stability of the 2-m-long two-beam modules, the shortest repetitive elements of the main linacs. These modules will be exposed to variable high power dissipation during operation resulting in mechanical distortions in and between module components. The stability of the CLIC module is being tested in laboratory conditions at CERN in a full-scale prototype module. In this paper, the revised finite element model developed for the CLIC two-beam module is described. In the current model, the structural behavior of the module is studied in more detail compared to the earlier configurations, in particular for what regards the contact modeling. The thermal and structural results for the module are presented considering the thermo-mechanical behavior of the CLIC collider in its primary operation modes. These results will be compared to the laboratory measurements to be done in 2012 with the full-scale prototype module. The experimental results will allow for better understanding of the module behavior and they will be propagated back to the present thermo-mechanical model.  
 
THPPC035 Final Assembly and Testing of the MICE Superconducting Spectrometer Solenoids 3362
 
  • S.P. Virostek, M.A. Green, T.O. Niinikoski, H. Pan, S. Prestemon
    LBNL, Berkeley, California, USA
  • R. Preece
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231.
The Muon Ionization Cooling Experiment (MICE) is an international effort to demonstrate the principle of ionization cooling in a segment of a realistic cooling channel using a muon beam. The experiment is sited at Rutherford Appleton Laboratory in England. A 4-tesla uniform field region at each end of the cooling channel will be provided by a pair of identical, 3-m long spectrometer solenoids. As the beam enters and exits the cooling channel, the emittance will be measured within both the upstream and downstream 400 mm diameter magnet bores. Each magnet consists of a three-coil spectrometer magnet group and a two-coil pair that matches the solenoid uniform field into the adjacent MICE cooling channel. An array of five two-stage cryocoolers and one single-stage cryocooler are used to maintain the temperature of the magnet cold mass, radiation shield and current leads. Previous testing revealed several operational and design issues related to heat leak and quench protection that have since been corrected. Details of the magnet design modifications and their final assembly as well as the results of quench training tests will be presented here.
 
 
THPPP093 Progress on MICE RFCC Module 3954
 
  • D. Li, D.L. Bowring, A.J. DeMello, S.A. Gourlay, M.A. Green, N. Li, T.O. Niinikoski, H. Pan, S. Prestemon, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California, USA
  • A.D. Bross, R.H. Carcagno, V. Kashikhin, C. Sylvester
    Fermilab, Batavia, USA
  • Y. Cao, S. Sun, L. Wang, L. Yin
    SINAP, Shanghai, People's Republic of China
  • A.B. Chen, B. Guo, L. Li, F.Y. Xu
    ICST, Harbin, People's Republic of China
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois, USA
  • T.H. Luo, D.J. Summers
    UMiss, University, Mississippi, USA
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231, US Muon Accelerator Program and NSF MRI award: 0959000.
Recent progress on the design and fabrication of the RFCC (RF and Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) will be reported. The MICE ionization cooling channel has two RFCC modules; each having four 201-MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by 3 cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements and tuning are in progress at LBNL. Fabrication of the cold mass of the first coupling coil magnet has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and will be described.